共查询到18条相似文献,搜索用时 46 毫秒
1.
2.
基于实数编码的自适应粒子群优化算法 总被引:1,自引:0,他引:1
刘淳安 《计算机工程与应用》2006,42(20):39-40,54
提出了一种新的自适应粒子群优化算法(AMPSO)。该算法在运行过程中根据粒子群多样性的度量指标大小和当前最优解的大小来确定最优粒子的变异概率以对算法进行自适应变异,从而有效地增强了粒子群优化(PSO)算法跳出局部最优解的能力,使PSO算法既摆脱了后期易陷入局部最优点的束缚,又保持了其前期搜索速度快的优点。对几个典型函数的测试结果表明,该算法是非常有效的。 相似文献
3.
一种改进的量子粒子群优化算法及其应用 总被引:2,自引:0,他引:2
为提高基于概率幅编码的量子粒子群算法的优化效率,提出了一种改进的量子粒子群优化算法。在改进的算法中,采用量子Hadamard门实现粒子位置的变异,将概率幅对换变异改进为更具柔韧性的旋转调整,有效避免了种群在搜索空间中多样性的丢失;通过分析惯性因子、自身因子和全局因子的关系,提出了一种根据粒子当前适应度自适应确定全局因子的方法。以函数极值优化问题为例,仿真结果表明改进算法的搜索能力和优化效率优于原量子粒子群算法。 相似文献
4.
5.
一种非线性权重的自适应粒子群优化算法 总被引:2,自引:1,他引:1
针对粒子群优化算法中出现早熟和不收敛问题,分析了基本PSO算法参数对其优化性能的影响,提出了基于非线性权重的自适应粒子群优化算法(NWAPSO)。在优化过程中,惯性权重随迭代次数非线性变化,改进的算法能使粒子自适应地改变搜索速度进行搜索,并与基本粒子群算法以及其他改进的粒子群算法进行了比较。实验结果表明,该算法在搜索精度和收敛速度等方面有明显优势。特别对于高维、多峰等复杂非线性优化问题,算法的优越性更明显。 相似文献
6.
基于量子位测量的二进制量子遗传算法在用于连续问题优化时,由于频繁的解码运算,严重降低了优化效率.针对这一问题,本文提出了一种基于量子位相位编码的量子遗传算法.该方法直接采用量子位的相位对染色体进行编码,采用量子旋转门实现染色体上相位的更新,采用Pauli-Z门实现染色体的变异.在该方法中,由于优化过程统一在空间[0,2π]<'n>进行,而与具体问题无关,因此,对不同尺度空间的优化问题具有良好的适应性.以函数极值优化为例,仿真结果表明该方法的搜索能力和优化效率明显优于普通量子遗传算法和标准遗传算法. 相似文献
7.
本文基于云理论把粒子群分为三个种群,用云方法修改粒子群算法中惯性权重,同时修改速度更新公式中\"认知部分\"和\"社会部分\",引入\"均值\"的概念,提出了一种基于均值的云自适应粒子群算法。该方法的最大优点是克服了粒子群算法在迭代后期,当一些粒子的个体极值对应的适应度值与全局极值对应的适应度值相差明显时,不能收敛到最优解的缺点。数值实验结果表明,该算法经过较少的迭代次数,就能找到最优解,且平均运算时间减少,降低了算法的平均时间代价。 相似文献
8.
9.
带自适应变异的量子粒子群优化算法 总被引:6,自引:0,他引:6
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。 相似文献
10.
一种量子粒子群算法的改进方法 总被引:3,自引:0,他引:3
针对量子粒子群算法存在的问题,设计基于公共历史的两种群并行搜索的量子粒子群算法。在利用群体历史优质解及最优粒子变异的基础上,对粒子群进行筛选,加快粒子群的收敛速度,并采用两种群并行搜索,防止同时陷入局部极值。通过多个函数的测试,该算法在收敛速度及寻找全局最优方面,都表现出较好的效果。 相似文献
11.
为了平衡多目标粒子群算法的多样性和收敛性,提出一种基于多样性检测的多子群多目标粒子群算法.首先,将多样性检测方法引入到多目标粒子群算法中,并结合多目标粒子群算法的特点进行改进.然后,将种群分为两个不同分工的子群,一个子群保持较好的多样性,在搜索空间进行全局搜索;另一个子群保持较好的收敛性,在Pareto前沿附近进行局部搜索.最后,根据多样性度量指标调整两个子群的搜索行为,以达到兼顾多样性和收敛性的目的.在标准测试问题上的仿真结果表明了所提算法的有效性. 相似文献
12.
对二进制布尔型粒子群优化算法提出改进,通过在其速度更新公式中引入扰动因子避免粒子过早的陷入局部极值,提出两种调整惯性权重和学习因子取1的概率的策略以平衡算法的收敛和发散,分别是按照粒子相似性自适应调整和线性调整,由此得到两种带扰动因子的布尔型粒子群优化算法。4个基准测试函数的对比,实验结果表明了两种改进算法的有效性和优良性能。 相似文献
13.
面向列车运行调整问题的粒子群算法研究* 总被引:1,自引:1,他引:0
列车运行调整问题是一种特殊的NP完全问题,不仅具有众多约束,并且有着列车等级要求和延迟传播限制,使得该问题搜索空间庞大,可行解范围狭小,往往难以获得较优解。为求解列车运行调整问题,针对此特殊性,将捕食搜索策略思想引入到粒子群算法中,并在此基础上提出一种速度限制的调整方式,同时辅以自适应控制,使得算法在大范围搜索时更易跳出局部最小解,而在小范围搜索时粒子飞行速度更慢,搜索更精确。将该算法用于列车运行调整问题,所得调整方案比遗传算法和普通粒子群算法结果更逼近原开行方案。 相似文献
14.
针对基本粒子群优化算法对高维函数优化时搜索精度不高的缺陷,提出了一种动态粒子群优化算法。该算法采用了通过调节阈值对粒子运动轨迹进行动态改变的策略,使得粒子对周围环境的适应能力不受进化代数的影响,从而保证了算法在迭代后期仍具有较强的搜索能力。实验结果表明,与文献算法相比,该算法在处理高维函数优化时具有更强的寻优能力和更高的搜索精度。 相似文献
15.
本文提出了一种改进粒子群优化算法。在进化中增加了个体间的协作机制,这种改进后的学习行为更符合自然界生物的学习规律,更有利于粒子发现问题的全局最优解。最后将该方法用于PERT网络工期一费用模型求解,数字仿真表明了算法的有效性。 相似文献
16.
杨洪雪 《计算机与应用化学》2015,32(1)
生产装置能否安全有效地运行,已经成为衡量工业生产发展水平的主要标志之一。面临日益复杂的化工过程生产装置,提高化工过程报警系统的性能有着重要的指导意义。传统的报警阈值参数设置方法局限性大,为了提升化工过程报警系统性能,需要对某些过程参数的报警阈值进行优化设置。本文针对传统粒子群算法的不足,采用了参数自适应的粒子群算法,该自适应粒子群算法通过实时调节自身的参数,使得能够较快地寻找到最优个体,且不容易陷入局部最优解。通过对一标准函数的研究,结果表明该自适应粒子群算法比传统的粒子群算法能够较快的达到最优解。随后,用该算法优化TE过程某一参数的报警阈值,降低了报警过程中误报和漏报的总次数,提高了报警系统的性能。本文所提方法为指导生产装置的安全运行提供了有效策略。 相似文献
17.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
18.
自适应路由算法能够根据网络状态选择路径,可以最大限度地提高网络的性能。构造了一种新型的路由表,设计了基于粒子群优化的自适应网络路由算法(PSORA)。在局域网环境下,对PSORA和基于跳计数准则的RIP的模拟试验表明,在相同的网络负载下PSORA的路由表构造时间略大于RIP,但当网络拓扑变化时,PSORA的收敛速度明显优于RIP。提出的自适应的路由算法能够根据网络变化快速收敛,具有较好的应用价值。 相似文献