首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 62 毫秒
1.
一种并行的自适应量子粒子群算法   总被引:1,自引:0,他引:1  
针对粒子群算法存在易陷入局部最优解的问题,提出了一种并行的自适应量子粒子群算法。通过共享粒子的两个极值,将改进后的自适应粒子群算法和边界变异的量子粒子群算法并行搜索,有效地克服了标准粒子群算法的缺陷。测试结果表明,该算法在精度和全局最优解的找寻速度方面有了很大的提高。  相似文献   

2.
基于实数编码的自适应粒子群优化算法   总被引:1,自引:0,他引:1  
提出了一种新的自适应粒子群优化算法(AMPSO)。该算法在运行过程中根据粒子群多样性的度量指标大小和当前最优解的大小来确定最优粒子的变异概率以对算法进行自适应变异,从而有效地增强了粒子群优化(PSO)算法跳出局部最优解的能力,使PSO算法既摆脱了后期易陷入局部最优点的束缚,又保持了其前期搜索速度快的优点。对几个典型函数的测试结果表明,该算法是非常有效的。  相似文献   

3.
一种改进的量子粒子群优化算法及其应用   总被引:2,自引:0,他引:2       下载免费PDF全文
为提高基于概率幅编码的量子粒子群算法的优化效率,提出了一种改进的量子粒子群优化算法。在改进的算法中,采用量子Hadamard门实现粒子位置的变异,将概率幅对换变异改进为更具柔韧性的旋转调整,有效避免了种群在搜索空间中多样性的丢失;通过分析惯性因子、自身因子和全局因子的关系,提出了一种根据粒子当前适应度自适应确定全局因子的方法。以函数极值优化问题为例,仿真结果表明改进算法的搜索能力和优化效率优于原量子粒子群算法。  相似文献   

4.
针对离散空间优化问题,给出二进制编码的量子粒子群优化(BQPSO)算法的设计思路,重新定义粒子的位置矢量和粒子之间的距离,提出了BQPSO 算法的进化方程.通过泛函分析的方法分析了BQPSO 算法的收敛性,得出全局收敛的结论,并通过多个测试函数测试了BQPSO 算法的性能.求解结果验证了算法的优越性.  相似文献   

5.
基于量子位测量的二进制量子遗传算法在用于连续问题优化时,由于频繁的解码运算,严重降低了优化效率.针对这一问题,本文提出了一种基于量子位相位编码的量子遗传算法.该方法直接采用量子位的相位对染色体进行编码,采用量子旋转门实现染色体上相位的更新,采用Pauli-Z门实现染色体的变异.在该方法中,由于优化过程统一在空间[0,2π]<'n>进行,而与具体问题无关,因此,对不同尺度空间的优化问题具有良好的适应性.以函数极值优化为例,仿真结果表明该方法的搜索能力和优化效率明显优于普通量子遗传算法和标准遗传算法.  相似文献   

6.
一种非线性权重的自适应粒子群优化算法   总被引:1,自引:1,他引:1       下载免费PDF全文
针对粒子群优化算法中出现早熟和不收敛问题,分析了基本PSO算法参数对其优化性能的影响,提出了基于非线性权重的自适应粒子群优化算法(NWAPSO)。在优化过程中,惯性权重随迭代次数非线性变化,改进的算法能使粒子自适应地改变搜索速度进行搜索,并与基本粒子群算法以及其他改进的粒子群算法进行了比较。实验结果表明,该算法在搜索精度和收敛速度等方面有明显优势。特别对于高维、多峰等复杂非线性优化问题,算法的优越性更明显。  相似文献   

7.
本文基于云理论把粒子群分为三个种群,用云方法修改粒子群算法中惯性权重,同时修改速度更新公式中"认知部分"和"社会部分",引入"均值"的概念,提出了一种基于均值的云自适应粒子群算法。该方法的最大优点是克服了粒子群算法在迭代后期,当一些粒子的个体极值对应的适应度值与全局极值对应的适应度值相差明显时,不能收敛到最优解的缺点。数值实验结果表明,该算法经过较少的迭代次数,就能找到最优解,且平均运算时间减少,降低了算法的平均时间代价。  相似文献   

8.
一种改进的自适应邻域粒子群优化算法   总被引:4,自引:1,他引:4  
在对粒子群优化(PSO)算法进行深入分析的基础上,建立了自适应邻域更新机制,再对惯性权重更新机制进行自适应化,分别从拓扑邻域结构和惯性权重两个角度对局部版PSO算法进行了改进,提出了一种实用、高效的自适应邻域粒子群优化算法,经7个标准测试函数验证,该算法具有较高效率和精度。  相似文献   

9.
带自适应变异的量子粒子群优化算法   总被引:6,自引:0,他引:6       下载免费PDF全文
提出了一种带有自适应变异的量子粒子群优化(AMQPSO)算法,利用粒子群的适应度方差和空间位置聚集度来发现粒子群陷入局部寻优时,对当前每个粒子经历过的最好位置进行自适应变异以实现全局寻优。通过对典型函数的测试以及与量子粒子群优化(QPSO)算法和自适应粒子群优化(AMPSO)算法的比较,说明AMQPSO算法增强了全局搜索的性能,优于其他算法。  相似文献   

10.
一种量子粒子群算法的改进方法   总被引:3,自引:0,他引:3  
针对量子粒子群算法存在的问题,设计基于公共历史的两种群并行搜索的量子粒子群算法。在利用群体历史优质解及最优粒子变异的基础上,对粒子群进行筛选,加快粒子群的收敛速度,并采用两种群并行搜索,防止同时陷入局部极值。通过多个函数的测试,该算法在收敛速度及寻找全局最优方面,都表现出较好的效果。  相似文献   

11.
充分利用粒子群优化算法的收敛速度较快及混沌运动的遍历性、随机性以及对初值的敏感性等特性,考虑到惯性因子对多样性的影响,通过引入早熟收敛程度评价机制,采用逻辑自映射函数来产生混沌序列,提出一种基于混沌思想的自适应混沌粒子群优化(ACPSO)算法,改善了粒子群优化算法摆脱局部极值点的能力,提高了算法的收敛速度和精度。仿真结果表明提出的自适应混沌粒子群优化算法的性能明显优于一般混沌粒子群优化算法。  相似文献   

12.
基于相位编码的混沌量子免疫算法   总被引:2,自引:0,他引:2  
目前量子群智能优化算法的个体均采用基于量子比特测量的二进制编码方式,在用于连续问题优化时,由于频繁的解码运算,严重降低了优化效率.针对这一问题,本文提出一种混沌量子免疫算法.该方法直接采用量子比特的相位对抗体进行编码;用量子旋转门实现优良抗体的克隆扩增,通过在量子旋转门中引入混沌变量动态改变转角大小实现局部搜索;用基于Pauli-Z门的较差抗体的变异,实现全局优化.证明了算法的收敛性.由于优化过程统一在空间[0,2π]n进行,而与具体问题无关,因此,对不同尺度空间的优化问题具有良好的适应性.实验结果表明该算法能有效改善普通免疫算法的搜索能力和优化效率.  相似文献   

13.
红外图像自适应增强的模糊粒子群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对红外图像目标与背景区分不明显、对比度低的特点,把粒子群优化算法应用到红外图像增强中,提出了红外图像自适应增强的模糊粒子群优化算法。灰度变换增强是红外图像增强的首选方法之一,而选取适当的阈值是其取得良好的增强效果的有力保证。该算法通过粒子群优化算法来寻求最大熵准则下的自适应阈值,然后用模糊灰度变换增强方法自适应地拉伸红外图像灰度,增强图像。仿真实验表明,相对于常见的直方图处理,该算法能降低红外图像中背景对目标的影响,能提高红外图像的对比度。  相似文献   

14.
复形法粒子群优化算法研究   总被引:1,自引:1,他引:0  
针对基本粒子群优化算法对复杂函数优化时难以获得最优解的缺陷,提出了一种复形粒子群优化算法。该算法采用复形法来提高粒子的局部搜索能力,从而保证了算法能够跳出局部最优,获得全局最优解。实验结果表明,与文献算法相比,该算法在基准函数优化时具有更强的寻优能力和更高的搜索精度。  相似文献   

15.
针对自适应IIR滤波器潜在的不稳定性和性能指标函数容易陷入局部极小点而导致性能下降等问题,用一种新的优化算法-微粒群算法来对自适应IIR滤波器进行优化设计,它不依赖于梯度信息,能够有效地实现自适应IIR滤波器参数的全局寻优,仿真结果表明用微粒群算法进行参数寻优优于遗传算法,不仅解决了自适应滤波器性能指标函数容易陷入局部极小点的问题,也解决了稳定性问题。  相似文献   

16.
粒子群和人工鱼群混合优化算法   总被引:2,自引:1,他引:2  
提出基于粒子群的人工鱼群混合优化算法,该算法综合利用人工鱼群算法的良好全局收敛性和粒子群算法的局部快速收敛性、易实现性等优点,克服人工鱼群算法收敛速度慢及粒子群算法后期全局收敛差的缺点,发挥了两者的优越性,并成功应用于求解具有变量边界约束的非线性的复杂函数最优化问题和求解复杂化学方程根的问题。仿真结果表明,混合粒子群算法不仅具有较好的全局收敛性能,而且具有较快的收敛速度。  相似文献   

17.
针对无等待Job Shop问题,采用量子粒子群优化算法对其进行了求解。该算法采用位置矢量的编码方式,全左移验证方式计算适应值。最后通过MATLAB对实例问题的仿真测试,量子粒子群优化算法不仅收敛速度快,而且还具有较好的求解质量。  相似文献   

18.
新型的动态粒子群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解决动态改变惯性权重的自适应粒子群算法不易跳出局部最优的问题,提出了一种自适应变异的动态粒子群优化算法。在算法中引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。对几种典型函数的测试结果表明,该算法的收敛速度明显优于文献算法,收敛精度也有所提高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号