首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Experimental observations of the creep response of a commercial sintered silicon nitride ceramic are presented. The stable microstructure of this material at high temperature contains secondary crystalline phases which result from partial devitrification of the intergranular phase. The widths of amorphous films along grain boundaries (between silicon nitride grains) and phase boundaries (between silicon nitride and secondary phase grains) are characterized by transmission electron microscopy. The thickness distributions of grain-boundary films before and after creep are analyzed by a statistical method. While the film widths are highly uniform before creep, a bimodal distribution is observed after creep. The results suggest that viscous flow of the boundary amorphous films occurs during creep deformation.  相似文献   

2.
An analysis was made of the Si3N4· Y2O3 crystallization process from a compacted Si3N4 powder (composition: 5 wt% Y2O3 and 2 wt% Al2O3) during heat treatment in various powder beds. X-ray diffraction was used to measure the degree of cyrstallization, which was correlated with weight loss. Crystallization and weight loss were affected significantly by the SiO2 content in the packing powder. Crystallization correlated strongly with the weight loss. The dominant loss was attributed to SiO volatilization from the Y-Si-Al-O-N liquid. The crystallization mechanism with the loss of material was interpreted using a solubility—supersolubility diagram at constant temperature.  相似文献   

3.
A procedure is shown to quantitatively analyze the morphology of the internal friction peak resulting from grain-boundary sliding. A Si3N4 polycrystal containing chlorine-doped SiO2 at grain boundaries is selected as a model system for discussing chemical (e.g., anion) gradients at glassy grain boundaries. In this model material, grain boundaries lodging Cl anions show nonuniform thickness characteristics, which suggests a non-negligible dependence of the intergranular SiO2-network structure upon grain misorientation. Both chemical and microstructural inhomogeneities existing in a polycrystalline ceramic body can result in peak broadening. The key for separating broadening contributions of chemical gradients from grain-size/morphology distributions resides in analyzing the peak-width change upon damping frequency. Groups of grain boundaries with different chemical characteristics may produce broadening because different peak components are generated that obey a spectrum of activation energies. On the other hand, microstructural inhomogeneities obey a single activation energy, but they generate a distribution of relaxation times. As a result, when a chemical gradient is present at grain boundaries, the peak may shift upon changing damping frequency with obeying a true activation energy, but its width increases with decreasing damping frequency. When peak broadening results only from microstructural inhomogeneities, the peak width is independent of damping frequency.  相似文献   

4.
The outstanding question as to the microstructure of silicon nitride at temperatures associated with potential high-temperature applications of the material is addressed experimentally by quenching thin (transmission electron microscopy) samples from 1450°C and examining them in the microscope. The morphology of the microstructure is qualitatively unchanged compared to the materials slowly cooled, for example, after hot-pressing, to room temperature. The most significant difference is that the thickness of the intergranular phase is larger, typically 2 to 10 nm, as compared to the ∼ 1 nm observed in the hot-pressed material. In addition there is an apparent increase in the volume fraction of the intergranular phase at the three-grain junctions. On the basis of a number of supporting experiments including both hot-stage transmission electron microscopy (up to 1000°C) and Auger electron spectroscopy of material fractured and examined at 850°C, the change in microstructure is concluded to occur at temperatures above about 1000°C.  相似文献   

5.
Shock Synthesis of Cubic Silicon Nitride   总被引:2,自引:0,他引:2  
The phase transitions of α-Si3N4 and β-Si3N4 have been investigated by shock compression through the recovery technique and Hugoniot measurements. α- and β-Si3N4 are transformed into a cubic spinel structure ( c -Si3N4). The yield of c -Si3N4 increases with increasing shock pressure and reaches 100% at 63 GPa. The shock-synthesized c -Si3N4 powders are nanocrystals and display a high-temperature metastability up to about 1620 K. c -Si3N4 is one of the hard materials based on the measured equation of state. c -Si3N4 powders have been characterized by electron microscopy and 29Si magic angle spinning NMR spectroscopy. The purification and separation method has been developed to obtain pure c -Si3N4 powders.  相似文献   

6.
Crystallizing the grain-boundary glass of a liquid-phase-sintered Si3N4 ceramic for 2 h or less at 1500° led to formation of δ-Y2Si2O7. After 5 h at 1500°, the δ-Y2Si2O7 had transformed to β-Y2Si2O7 with a concurrent dramatic increase in dislocation density within β-Si3N4 grains. Reasons for the increased dislocation density are discussed. Annealing for 20 h at 1500° reduced dislocation densities to the levels found in as-sintered material.  相似文献   

7.
Internal friction experiments were conducted on a model SiC polycrystal prepared from preoxidized (high-purity) SiC powder. This material contained high-purity SiO2 glass at grain boundaries in addition to a free-carbon phase, which was completely removed upon powder preoxidation. Comparative tests were conducted on a SiC polycrystal, obtained from the as-received SiC powder with the addition of 2.5 vol% of high-purity SiO2. This latter SiC material was also investigated after annealing at 1900°C for 3 h in a nitrogen atmosphere. Electron microscopy observations revealed a glass-wetted interface structure in SiC polycrystals prepared from both as-received and preoxidized powders. However, the former material also showed a large fraction of interfaces coated by turbostratic graphite. Upon high-temperature annealing in nitrogen, partial glass dewetting occurred, and voids were systematically observed at multigrain junctions. The actual presence of nitrogen could only be detected in a limited number of wetted interfaces. A common feature in the internal friction behavior of the preoxidized, SiO2-added and nitrogen-annealed SiC was a relaxation peak that resulted from grain-boundary sliding. Frequency-shift analysis revealed markedly different characteristics for this peak: both the magnitude of the intergranular glass viscosity and the activation energy for grain-boundary viscous flow were much higher in the nitrogen-annealed material. Results of torsional creep tests were consistent with these findings, with nitrogen-annealed SiC being the most creep resistant among the tested materials.  相似文献   

8.
Elastic Moduli and Hardness of Cubic Silicon Nitride   总被引:8,自引:0,他引:8  
The bulk modulus B 0= 290(5) GPa and its first pressure derivative B '0= 4.9(6) were obtained for c -Si3N4 from volume versus pressure dependence. Measurements were performed under quasi-hydrostatic conditions in a diamond anvil cell to 53 GPa using synchrotron radiation and energy dispersive X-ray powder diffraction. This combined with nanoindentation measurements determined the shear modulus G 0 of c -Si3N4 to be 148(16) GPa. The Vickers microhardness H V(0.5) for dense, oxygen-free c -Si3N4 was estimated to be between 30 and 43 GPa. Both the elastic moduli and microhardness of c -Si3N4 exceed those of the hexagonal counterparts, α- and β-phases.  相似文献   

9.
In Si3N4 ceramics sintered with Al2O3, the interfacial strength between the intergranular glass and the reinforcing grains has been observed to increase with increases in the aluminum and oxygen content of the epitaxial β-Si6- z Al z O z N8– z layer that forms on the Si3N4 grains. This has been attributed to the formation of a network of strong bonds (cross bonds) that span the glass-crystalline interface. This proposed mechanism is considered further in light of first-principles atomic cluster calculations of the relative stabilities of bridge and threefold-bonded atomic fragments chosen to represent compositional changes at the glass/Si3N4 grain interface. Calculated binding energies indicate Al-N binding is favorable at the Si3N4 grain surface, where aluminum occupancy can promote the growth of SiAlON, further enhancing the cross-bonding mechanism of interfacial strengthening.  相似文献   

10.
Based on a biomimetic design, Si3N4/BN composites with laminated structures have been prepared and investigated through composition control and structure design. To further improve the mechanical properties of the composites, Si3N4 matrix layers were reinforced by SiC whiskers and BN separating layers were modified by adding Si3N4 or Al2O3. The results showed that the addition of SiC whiskers in the Si3N4 matrix layers could greatly improve the apparent fracture toughness (reaching 28.1 MPa·m1/2), at the same time keeping the higher bending strength (reaching 651.5 MPa) of the composites. Additions of 50 wt% Al2O3 or 10 wt% Si3N4 to BN interfacial layers had a beneficial effect on the strength and toughness of the laminated Si3N4/BN composites. Through observation of microstructure by SEM, multilevel toughening mechanisms contributing to high toughness of the laminated Si3N4/BN composites were present as the first-level toughening mechanisms from BN interfacial layers as crack deflection, bifurcation, and pull-out of matrix sheets, and the secondary toughening mechanism from whiskers in matrix layers.  相似文献   

11.
Theoretical Prediction of Post-Spinel Phases of Silicon Nitride   总被引:1,自引:0,他引:1  
New phases of Si3N4 that may be stable at higher pressure than spinel have been searched using a first-principles plane-wave pseudopotential method. The CaTi2O4-type phase is found to be the prime candidate for the post-spinel phase among six phases selected on the analogy to high-pressure oxides. The phase transformation from the spinel is predicted to occur at 210 GPa. All silicon atoms of the new phase are coordinated by six anions, similar to the case of the high-pressure forms of SiO2 and SiC. Because of its high energy at zero pressure, this new phase may be difficult to quench. The bandgap increases with an increase of pressure when compared in the same polymorph. However, the bandgap and the net charge decrease in the order of β, spinel, and CaTi2O4-type phases at zero pressure. The theoretical bulk modulus of the CaTi2O4-type phase is comparable with that of spinel.  相似文献   

12.
The reactivity of AlN powder with water in supernatants obtained from centrifuged Si3N4 and SiC slurries was studied by monitoring the pH versus time. Various Si3N4 and SiC powders were used, which were fabricated by different production routes and had surfaces oxidized to different degrees. The reactivity of the AlN powder in the supernatants was found to depend strongly on the concentration of dissolved silica in these slurries relative to the surface area of the AlN powder in the slurry. The hydrolysis of AlN did not occur if the concentration of dissolved silica, with respect to the AlN powder surface, was high enough (1 mg SiO2/(m2 AlN powder)) to form a layer of aluminosilicates on the AlN powder surface. This assumption was verified by measuring the pH of more concentrated (31 vol%) Si3N4 and SiC suspensions also including 5 wt% of AlN powder (with respect to the solids).  相似文献   

13.
An in situ -toughened silicon carbide (ABC-SiC) has been examined in the as-processed condition, where the grain-boundary films are predominantly amorphous, and following thermal exposure at a temperature of 1300°C, where the films become fully crystalline. Previous work has shown that, at elevated temperatures (up to 1300°C), after the grain-boundary films crystallize in situ , only a marginal reduction in strength, fracture toughness, and cyclic-fatigue crack-growth properties is observed, in comparison with those of the as-processed microstructure at 25°C. In the present study, the effect of such crystallization on the subsequent strength, toughness, and fatigue properties at 25°C is examined. Little or no degradation is observed in the room-temperature properties with the crystallized grain-boundary films/phase; in fact, although the strength shows a small reduction (∼3%), the fracture toughness and fatigue-crack-growth threshold both increase by ∼20%, compared with that of the as-processed structure with amorphous grain-boundary films.  相似文献   

14.
Dense hot-pressed β-Si3N4 blocks were joined using both SiO2 and SiO2-Y2O3 powder slurries as bonding interlayers. The assembled specimens (Si3N4/interlayer/Si3N4) were heated in a flowing N2 atmosphere in the temperature range of 1500°–1650°C. The joining interlayer was clearly distinguished from the Si3N4 bulk. The microstructure and the reaction products found in the bonding interlayer were very different in both compositions. Reactions occurring between the Si3N4 and the ceramic joining compositions have been explained based on existing diagrams of the YN–Si3N4-Y2O3-SiO2 system.  相似文献   

15.
Silicon nitride ceramics seeded with 3 wt%β-Si3N4 whiskers of two different sizes were prepared by a modified tape casting and gas pressure sintering. The fine whiskers had a higher aspect ratio than the coarse whiskers. Quantitative texture analysis including calculation of the orientation distribution function (ODF) was used for obtaining the degrees of preferred orientation of sintered samples. The maximum multiples of random distribution (mrd) values of samples seeded with the fine and coarse whiskers were large, greater than 15 and 9, respectively. Meanwhile, the mrd value of a sample seeded with fine whiskers was only 9 when it was prepared by conventional tape casting. The microstructures and the XRD data revealed that the well-aligned whiskers grew significantly after sintering and dominated the texture. Differences among the degrees of preferred orientation of the samples were explained using Jeffrey's model on rotation of elliptical particles carried by a viscous fluid.  相似文献   

16.
Two high-purity Si3N4 materials were fabricated by hot isostatic pressing without the presence of sintering additives, using an amorphous laser-derived Si3N4 powder with different oxygen contents. High-resolution transmission electron microscopy and electron energy-loss spectroscopy (EELS) analysis of the Si3N4 materials showed the presence of an amorphous SiO2 grain-boundary phase in the three-grain junctions. Spatially resolved EELS analysis indicated the presence of a chemistry similar to silicon oxynitride at the two-grain junctions, which may be due to partial dissolution of nitrogen in the grain-boundary film. The chemical composition of the grain-boundary film was SiNxOy, (x ∼ 0.53 and y ∼ 1.23), and the triple pocket corresponded to the amorphous SiO2 containing ∼2 wt% nitrogen. The equilibrium grain-boundary-film thickness was measured and found to be smaller for the material with the lower oxygen content. This difference in thickness has been explained by the presence of the relatively larger calcium concentration in the material with the lower amount of SiO2 grain-boundary phase, because the concentration of foreign ions has been shown to affect the grain-boundary thickness.  相似文献   

17.
Ultrafine Si3N4 and Si3N4+ SiC mixed powders were synthesized through thermal plasma chemical vapor deposition (CVD) using a hybrid plasma which was characterized by the superposition of a radio-frequency plasma and an arc jet. The reactant, SiCl4, was injected into an arc jet and completely decomposed in a hybrid plasma, and the second reactant, CH4 and/or NH3, was injected into the tail flame through multistage ring slits. In the case of ultrafine Si3N4 powder synthesis, reaction effieciency increased significantly by multistage injection compared to single-stage injection. The most striking result is that amorphous Si3N4 with a nitrogen content of about 37 wt% and a particle size of 10 to 30 nm could be prepared successfully even at the theoretical NH3/SiCl4 molar ratio of ∼ 1.33, although the crystallinity depended on the NH3/SiCl4 molar ratio and the injection method. For the preparation of Si3N4+ SiC mixed powders, the N/C composition ratio and particle size could be controlled not only by regulating the flow rate of the NH3 and CH4 reactant gases and the H2 quenching gas, but also by adjusting the reaction space. The results of this study provide sufficient evidence to suggest that multistage injection is very effective for regulating the condensation process of fine particles in a plasma tail flame.  相似文献   

18.
Machinability of Silicon Nitride/Boron Nitride Nanocomposites   总被引:4,自引:0,他引:4  
The machinability and deformation mechanism of Si3N4/BN nanocomposites were investigated in the present work. The fracture strength of Si3N4/BN microcomposites remarkably decreased with increased hexagonal graphitic boron nitride ( h -BN) content, although machinability was somewhat improved. However, the nanocomposites fabricated using the chemical method simultaneously had high fracture strength and good machinability. Hertzian contact tests were performed to clarify the deformation behavior by mechanical shock. As a result of this test, the damage of the monolithic Si3N4 and Si3N4/BN microcomposites indicated a classical Hertzian cone fracture and many large cracks, whereas the damage observed in the nanocomposites appeared to be quasi-plastic deformation.  相似文献   

19.
氮化硅薄膜是一种多功能材料,在许多领域有着广泛的应用。本文系统综述氮化硅薄膜的性质、结构、应用及各种制备方法,并对今后的研究作了展望。  相似文献   

20.
A chemical process for fabrication of Si3N4/BN nanocomposite was devised to improve the mechanical properties. Si3N4/BN nanocomposites containing 0 to 30 vol% hexagonal BN ( h -BN) were successfully fabricated by hot-pressing α-Si3N4 powders, on which turbostratic BN ( t -BN) with a disordered layer structure was partly coated. The t -BN coating on α-Si3N4 particles was prepared by reducing and heating α-Si3N4 particles covered with a mixture of boric acid and urea. TEM observations of this nanocomposite revealed that the nanosized hexagonal BN ( h -BN) particles were homogeneously dispersed within Si3N4 grains as well as at grain boundaries. As expected from the rules of composites, Young's modulus of both micro- and nanocomposites decreased with an increase in h -BN content, while the fracture strength of the nanocomposites prepared in this work was significantly improved, compared with the conventional microcomposites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号