首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
通过硫酸水解微晶纤维素法制备纳米纤维素晶体(CNC),将其与一定量的纳米氧化锌复合制得复合材料;然后使用一定量的硬脂酸对复合材料进行改性,并将所得改性后的溶胶在120℃下鼓风干燥2 h,即可得到硬脂酸改性的CNC/纳米ZnO复合疏水材料。并采用X-射线衍射仪、场发射扫描电镜、傅里叶红外光谱和接触角分析仪对复合材料的表面形貌和疏水性进行了表征及揭示。结果表明,CNC/纳米ZnO复合材料构成微/纳米双重粗糙结构,经硬脂酸表面改性后引入了憎水基团甲基,使其具备一定的疏水性能,在最优制备工艺条件下疏水角可高达到145.6°。  相似文献   

2.
综述了近年来微波在纳米和亚纳米ZnO材料制备中的应用和研究进展,并展望了其发展趋势和前景。微波不仅在制备时间和能源利用效率等方面明显优于常规方法,还可以得到特殊形态和性能的ZnO材料。  相似文献   

3.
以微晶纤维素为原料,通过硫酸酸解制备获得了纳米纤维素。实验优选获得了酸解制备纳米纤维素的优化条件为:硫酸初始浓度35%,反应温度40℃,酸解时间90 min,此优化条件下,纳米纤维素的产率可达83.55%;SEM和TEM观察产物的形态外貌,确定为纳米级纤维素;XRD分析显示纳米纤维素的结晶度要高于微晶纤维素,而TG分析显示NCC的热稳定性要低于微晶纤维素。  相似文献   

4.
以微晶纤维素为原料,通过硫酸酸解制备获得了纳米纤维素。实验优选获得了酸解制备纳米纤维素的优化条件为:硫酸初始浓度35%,反应温度40℃,酸解时间90 min,此优化条件下,纳米纤维素的产率可达83.55%;SEM和TEM观察产物的形态外貌,确定为纳米级纤维素;XRD分析显示纳米纤维素的结晶度要高于微晶纤维素,而TG分析显示NCC的热稳定性要低于微晶纤维素。  相似文献   

5.
纳米ZnO作为一种重要的宽带隙半导体,具有与体材料明显不同的电、磁、光等性质,逐渐成为研究的热点并得到广泛应用。综述了不同纳米结构(颗粒、线、带、棒、其它特殊形状)ZnO近年来的研究进展,对其合成技术进行了描述,对特殊结构ZnO纳米复合物的研究近况作了简单介绍,并对其今后的研究方向进行了展望。  相似文献   

6.
纳米ZnO作为一种重要的宽带隙半导体,具有与体材料明显不同的电、磁、光等性质,逐渐成为研究的热点并得到广泛应用。综述了不同纳米结构(颗粒、线、带、棒、其它特殊形状)ZnO近年来的研究进展,对其合成技术进行了描述,对特殊结构ZnO纳米复合物的研究近况作了简单介绍,并对其今后的研究方向进行了展望。  相似文献   

7.
以去除半纤维素的速生杨木残渣为原料,在70℃下按固液比1:100(g:mL)加入1.5 mol/L过硫酸铵溶液,处理16 h制备纤维素纳米晶体。所得样品为白色粉末状固体,得率(以原料中纤维素质量计)为57%,氧化度为0.156,表面电荷为-42.15 mV。采用透射电子显微镜、傅里叶变换红外光谱、X射线衍射、核磁共振等技术对得到的纳米纤维素进行表征。结果表明:过硫酸铵去除了原料中的木质素和残余的少量半纤维素,并有选择地将纤维素C6位置上的伯醇羟基氧化成羧基,纤维素纳米晶体保留了原纤维素的结构特征,结晶度为77%,晶体结构以Iβ晶型为主,88.4%的纤维素纳米晶体宽度在10~24 nm之间。  相似文献   

8.
以氯金酸为原料,柠檬酸钠为保护剂,成功制备出金纳米粒子,并应用透射电镜和紫外-可见分光光度计对该实验样品进行了表征,结果表明此类纳米粒子尺寸均匀、呈球形单分散分布.  相似文献   

9.
纳米ZnO制备过程中的热处理条件分析   总被引:2,自引:0,他引:2  
采用均匀沉淀法制备纳米ZnO,研究了热处理条件对粒径的影响。通过TG-DTA,XRD的研究表明:老化时间越长,焙烧温度越高,焙烧时间越长,升温速率越慢得到的纳米粒子粒径越大。  相似文献   

10.
ATO包覆纳米ZnO粉体的制备及表征   总被引:1,自引:0,他引:1  
采用液相沉积法对纳米氧化锌进行表面包覆ATO改性,用自制粉体电阻测定仅对掺杂粉体导电性能进行测定,利用Zate电位测定仪考察包覆前后纳米ZnO在水体系中的分散稳定性,采用SEM、TEM对导电粉体进行分析.讨论了不同ATD掺杂量和煅烧温度对包覆粉体体积电阻率的影响.结果表明,ATO在氧化锌表面形成均匀的包覆层,最佳掺杂量30%左右,最佳煅烧温度约520℃,有效改变了氧化锌的等电点,提高了纳米氧化锌在水中的分散稳定性.  相似文献   

11.
通过静电纺丝法制备了直径为(320±51)nm的前驱体醋酸锌/聚氨酯(Zn(OAc)2/PU)复合纳米纤维。将前驱体先后经过0.1 mol/L NaOH乙醇溶液和甘油浴热处理,得到ZnO纳米晶/PU复合纳米纤维。讨论了甘油浴温度和时间对纳米纤维结构和形貌的影响,研究了其吸附性能。实验结果表明,经过0.1 mol/L NaOH乙醇溶液处理后,前驱体纤维Zn(OAc)2/PU转变为ZnO/PU纤维且ZnO主要以低结晶和无定型态存在;再经过甘油浴处理后,低结晶和无定型态的ZnO转变为晶型完整的六方晶系纤锌矿结构,得到了ZnO纳米晶/PU复合纳米纤维,该纤维对有机染料分子罗丹明B有良好的吸附性能。  相似文献   

12.
Tm3+ doped zinc silicate glass-ceramics composed of SiO2-Al2O3-ZnO-K2O-Tm2O3 embedded with ZnO nanocrystals were successfully fabricated by melt-quenching method with subsequent heat treatment. Tm3+ ions and ZnO nanocrystals were introduced as blue and yellow luminescence centers, respectively. The effects of heat treatment, excitation wavelength and Tm3+ doping concentration on the photoluminescence behaviors of these glass-ceramics were studied. Short-time (5 minutes) heat treatment was considered as the optimal heat treatment time, which facilitates simultaneously emitting narrow blue peak located at 453 nm and a broad yellow band centered at 580 nm. Blue and yellow emissions could be attributed to the 1D2 → 3F4 transition of Tm3+ and Zni/Oi-related defect emission of ZnO nanocrystals, respectively. The combination of these two emissions allows the realization of white light emitting in the glass-ceramic samples. Furthermore, tunable luminescent color and chromaticity coordinates, including yellow, white and blue, can be realized by varying the pumping wavelengths as well as the content of Tm3+ dopant in the glass matrix. Nearly perfect white light emission with Commission Internationale de l'Eclairage coordinate (x = 0.33, y = 0.32) was achieved for the 0.05 mol% Tm3+ doped glass-ceramic embedding ZnO nanocrystals by heat treatment at 750°C for 5 minutes under the excitation of 360 nm. These luminescent glass-ceramics doped with Tm3+ ion and ZnO nanocrystals could be a promising candidate for white light emitting devices under near-ultraviolet excitation.  相似文献   

13.
溶胶-凝胶法制备ZnO微粉及其电学性质   总被引:2,自引:0,他引:2  
曹建明 《应用化工》2005,34(5):285-287
以柠檬酸和柠檬酸三铵为络合剂,利用溶胶凝胶法制备ZnO微粉。在乙酸锌浓度为0.2mol/L、柠檬酸浓度为0.05mol/L时得到的ZnO微粒粒径较小;在乙酸锌浓度为1.0mol/L、柠檬酸三铵浓度为0.5mol/L、灼烧温度为600℃时得到的ZnO微粒粒径较小。并分别对其性能进行表征,包括激光光散射粒度分析、红外检测、X 射线衍射分析、电学性质测定(阻抗、伏安特性曲线)。  相似文献   

14.
Quasi-one-dimensional (quasi-1D) ZnO nanowire arrays with hexagonal pattern have been successfully synthesized via the vapor transport process without any metal catalyst. By utilizing polystyrene microsphere self-assembled monolayer, sol–gel-derived ZnO thin films were used as the periodic nucleation sites for the growth of ZnO nanowires. High-quality quasi-1D ZnO nanowires were grown from nucleation sites, and the original hexagonal periodicity is well-preserved. According to the experimental results, the vapor transport solid condensation mechanism was proposed, in which the sol–gel-derived ZnO film acting as a seed layer for nucleation. This simple method provides a favorable way to form quasi-1D ZnO nanostructures applicable to diverse fields such as two-dimensional photonic crystal, nanolaser, sensor arrays, and other optoelectronic devices.  相似文献   

15.
In this study, we have fabricated and characterized the silicon [Si] wire solar cells with conformal ZnO nanorod antireflection coating [ARC] grown on a Al-doped ZnO [AZO] seed layer. Vertically aligned Si wire arrays were fabricated by electrochemical etching and, the p-n junction was prepared by spin-on dopant diffusion method. Hydrothermal growth of the ZnO nanorods was followed by AZO film deposition on high aspect ratio Si microwire arrays by atomic layer deposition [ALD]. The introduction of an ALD-deposited AZO film on Si wire arrays not only helps to create the ZnO nanorod arrays, but also has a strong impact on the reduction of surface recombination. The reflectance spectra show that ZnO nanorods were used as an efficient ARC to enhance light absorption by multiple scattering. Also, from the current-voltage results, we found that the combination of the AZO film and ZnO nanorods on Si wire solar cells leads to an increased power conversion efficiency by more than 27% compared to the cells without it.  相似文献   

16.
Crystalline silk fibroin nanoparticles (CSFs), a kind of natural protein nanocrystal, were prepared by treatment of silk fibroin (SF) powders with 64 wt% aqueous sulfuric acid. Various treatment periods were tested, and optimal conditions corresponded to 2 h at 45 °C. Transmission electron microscopy observation showed that the CSFs existed as short rod‐like fragments and spherical particles. The content ratio of β‐sheet structure to α‐form/random coil and the percentage crystallinity (χc) increased, but the weight‐average molecular weight of CSFs decreased with prolonged degradation time. Compared with native SF, these CSFs of nanometer size and relatively high χc showed an upward shift of the glass transition temperature and thermal degradation temperature. Furthermore, high‐strength elastic nanocomposite materials were successfully prepared from the CSFs and waterborne polyurethane (WPU). One of the WPU/CSF films produced exhibited significant increases from 1070 to 2370% for elongation at break, 0.6 to 2.2 MPa for tensile strength and 0.3 to 4.0 MPa for Young's modulus. This work provides a new pathway for the preparation of natural nanocrystals and WPU‐based elastomers with high strength and toughness. Copyright © 2012 Society of Chemical Industry  相似文献   

17.
近几十年来,国内外有关ZnO压敏电阻器低压化的研究报道很多。本文对低压化的方法作了较为系统的归类及评述,并对其发展趋势作了初步探讨。  相似文献   

18.
Fullerene-Nafion composite membranes have been fabricated through a new solution casting for the first time. The fullerenes used for the composites included C60 and polyhydroxy fullerene (PHF), C60(OH)n (n ∼ 12). The dispersion of the fullerene in the composite membrane was much more refined with smaller agglomeration particles, relative to the previously prepared fullerene-Nafion composites in which the fullerene was introduced through doping. The miscibility of the hydrophobic fullerene, C60, in the Nafion matrix was further improved by a new fullerene dispersant, poly[tri(ethylene oxide)benzyl]fullerene, C60[CH2C6H4(OCH2CH2O)3OCH3]n (n ∼ 5), synthesized in this work. The solution-cast fullerene composites also demonstrated a significant improvement in the physical stability relative to the fullerene-doped Nafion composites through a better integration of the fullerene into the Nafion matrix. Furthermore, increased loadings of the fullerene in Nafion were made possible through the new solution-casting method, compared to the previous doping method. The water characteristics in the fullerene composites have been examined by TGA and 1H pulse NMR measurements. The interactions between the fullerene and the Nafion have been studied through ATR FT-IR and molecular dynamics simulations which suggested PHF resides primarily in the hydrophobic domain of Nafion when the loading was low. The voltammetric measurements also have shown that the fullerene composites have the reduced limiting current density, compared to Nafion membranes without fullerenes.  相似文献   

19.
ZnO nanoparticles (NPs) with rod, bullet and broom-like morphologies have been synthesized by the solvothermal method. Structural analysis revealed ZnO NPs to be of the single crystal wrutzite hexagonal structure. Their size and morphology were controlled by varying the polarity of solvents. The aspect ratio of ZnO NPs at the lower polarity was below 2, and their shape was like a bullet. When increasing the polarity of solvent, the aspect ratio also increases and the shape changes to a rod-like morphology. This process is very simple and scalable. In addition, it can be used for fundamental studies of the tunable morphology formation.  相似文献   

20.
The fabrication and properties of n-ZnO nanowires/p-CuO coaxial heterojunction (CH) with a photoresist (PR) blocking layer are reported. In our study, c-plane wurtzite ZnO nanowires were grown by aqueous chemical method, and monoclinic CuO (111) was then coated on the ZnO nanowires by electrochemical deposition to form CH. To improve the device performance, a PR layer was inserted between the ZnO buffer layer and the CuO film to serve as a blocking layer to block the leakage current. Structural investigations of the CH indicate that the sample has good crystalline quality. It was found that our refined structure possesses a better rectifying ratio and smaller reverse leakage current. As there is a large on/off ratio between light on and off and the major light response is centered at around 424 nm, the experimental results suggest that the PR-inserted ZnO/CuO CH can be used as a good narrow-band blue light detector.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号