首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By means of contact angle measurements on dry layers of electrostatically neutral dextran with pure water (pH 6.1), water acidified with HCl (to pH 1.94) and water made alkaline with NaOH (to pH 12.8), it could be shown that there was essentially no change as a function of pH in the ratio of γ+? of water as compared with the aqueous acid and alkaline solutions. (Here γ+ is the Lewis acid parameter of the polar surface tension component of water and γ? is its Lewis base parameter). In contrast, with contact angles measured with the same liquids on negatively charged clean glass, a significant decrease in contact angle was observed with water at pH 12.8, which was caused by the fact that at this alkaline pH an increase in surface hydrophilicity took place. This is because surfaces that have a given surface electrical potential at neutral pH generally acquire an even higher surface potential under more alkaline conditions which, concomitantly, also gives rise to an increase in surface hydrophilicity, and thus to lower contact angles with water. Finally, contact angles with acid water, pure water, and alkaline water, deposited on hydrophobic Parafilm surfaces, were exactly the same.  相似文献   

2.
On the Predominant Electron-Donicity of Polar Solid Surfaces   总被引:2,自引:0,他引:2  
The reasons for the predominant electron-donicity of almost all solid polar surfaces and its implications are discussed in this paper. By contact angle or interfacial tension measurements, the electron-accepting as well as the electron-donating properties of polar liquids can be ascertained, through the interplay between their energies of adhesion and cohesion. For the solid-liquid interface, direct interfacial tension measurements are not possible, but indirectly, solid/liquid interfacial tensions of polar systems can be obtained by contact angle measurement. However, as the energy of cohesion of a solid does not influence the contact angle formed by a liquid drop placed upon its surface, one can only measure the solid surface'ks residual polar property, manifested by the energy of adhesion between solid and liquid. This residual polar property is of necessity the dominant component; in most cases this turns out to be its electron donicity. When, by means of contact angle measurements with polar liquids, both electron-accepting and electron-donating potentials are found on a polar solid, it is most likely still partly covered with a polar liquid: usually water. The amount of residual water of hydration of a polar solid follows from its polar (Lewis acid-base) surface tension component (γAB). The degree of orientation of the residual water of hydration on a polar solid can be expressed by the ratio of the electron-donating to electron-accepting potentials (γ), measured on the hydrated surface.  相似文献   

3.
Low-rate dynamic contact angles of 12 liquids on a poly(methyl methacrylate/n-butyl methacrylate) P(MMA/nBMA) copolymer are measured by an automated axisymmetric drop shape analysis-profile (ADSA-P). It is found that 6 liquids yield non-constant contact angles, and/or dissolve the polymer on contact. From the experimental contact angles of the remaining 6 liquids, it is found that the liquid- vapour surface tension times the cosine of the contact angle changes smoothly with the liquid-vapour surface tension, i.e., γiv cos θ depends only on γiv for a given solid surface (or solid surface tension). This contact angle pattern is in harmony with those from other inert and noninert (polar and non-polar) surfaces [34-42, 51 -53]. The solid-vapour surface tension calculated from the equation-of-state approach for solid -liquid interfacial tensions [14] is found to be 34.4 mJ/m2, with a 95% confidence limit of \pm 0.8mJ/m2, from the experimental contact angles of the 6 liquids.  相似文献   

4.
The effect of activation of the surface of polypropylene sheet, by a corona discharge, upon the contact angles of liquids and on the surface free energy parameters γLW, γ and γ, was determined. Both advancing and retreating contact angles were measured. The “acid/base” theory of the components of surface free energy was employed.

The contact angles of water and glycerol were initially lower by as much as 30°, after treatment, and that of diiodomethane was lower by about 5°. With time, the advancing angles rose, and the γ and γ parameters fell, towards the values on the untreated solids, and attained more or less steady values after 5 to 10 days. The basic component, γ, was the most strongly affected by the corona treatment; it rose, typically, from 2.2 to as high as 25 mJ/m2. The acidic component, γ, rose from zero to as high as 1.9 mJ/m2. Its decay with time was only qualitatively the same as that of γ. The retreating angles, and the corresponding energy components, were changed in the same direction, and somewhat more strongly, than were the “advancing” data.

The well-known improvement in the property of forming strong joints or adherent coatings, after corona treatment, is no doubt due to the formation of sites or areas on the polymers where hydrogen bonds can be formed. The decay of the strength of adhesion with time is, no doubt, due to the decay of these sites or areas.  相似文献   

5.
Hydrophobic solid surfaces with controlled roughness were prepared by coating glass slides with an amorphous fluoropolymer (Teflon® AF1600, DuPont) containing varying amounts of silica spheres (diameter 48 μm). Quasi-static advancing, θA, and receding, θR, contact angles were measured with the Wilhelmy technique. The contact angle hysteresis was significant but could be eliminated by subjecting the system to acoustic vibrations. Surface roughness affects all contact angles, but only the vibrated ones, θV, agree with the Wenzel equation. The contact angle obtained by averaging the cosines of θA and θR is a good approximation for θV, provided that roughness is not too large or the angles too small. Zisman's approach was employed to obtain the critical surface tension of wetting (CST) of the solid surfaces. The CST increases with roughness in accordance with Wenzel equation. Advancing, receding, and vibrated angles yield different results. The θA is known to be characteristic of the main hydrophobic component (the fluoropolymer). The θV is a better representation of the average wettability of the surface (including the presence of defects).  相似文献   

6.
Accurate surface tension of Teflon® AF 1600 was determined using contact angles of liquids with bulky molecules. For one group of liquids, the contact angle data fall quite perfectly on a smooth curve corresponding to γsv = 13.61 mJ/m2, with a mean deviation of only ±0.24 degrees from this curve. Results suggest that these liquids do not interact with the solid in a specific fashion. However, contact angles of a second group of liquids with fairly bulky molecules containing oxygen atoms, nitrogen atoms, or both deviate somewhat from this curve, up to approximately 3 degrees. Specific interactions between solid and liquid molecules and reorientation of liquid molecules in the close vicinity of the solid surface are the most likely causes of the deviations. It is speculated that such processes induce a change in the solid-liquid interfacial tension, causing the contact angle deviations mentioned above. Criteria are established for determination of accurate solid surface tensions.  相似文献   

7.
在固体材料表面黏附成膜是微藻细胞的一种生理特性。近些年基于微藻生物膜的生物过程,如生物膜贴壁培养和防附着技术受到了很多关注。微藻在固体材料表面的黏附受藻细胞与材料表面之间的相互作用的影响,建立黏附强度与材料表面性质参数间的关系对于通过材料选择来强化或控制微藻生物膜具有非常重要的意义。本工作的目的是揭示和明确材料亲疏水性对微藻黏附的影响,提出了一种双酚A环氧(EP)树脂表面亲疏水改性的方法。通过将亲水性的二乙醇胺(DEA)或疏水性的聚甲基聚硅氧烷(PMHS)加入到EP树脂中反应,EP树脂表面水接触角在36.80?~98.34?范围内可通过加入不同量的DEA或PMHS实现任意可调,材料的表面水接触角与DEA或PMHS加入量之间有线性关系。重要的是这种改性方法获得的材料,其形貌、结构、表面粗糙度等表面性质几乎没有变化,从而在研究和关联微藻黏附量与材料表面亲疏水性(表面水接触角)之间的关系时可以排除亲疏水性之外的其他表面性质的影响;其次,考察了小球藻和栅藻在不同亲疏水性材料表面的黏附行为,结果表明小球藻和栅藻在亲水性和疏水性材料表面均能黏附成膜,但在亲水性材料表面黏附更多更快;建立了微藻最大黏附容量与材料表面接触角之间关联关系,表明微藻最大黏附容量随材料表面水接触角的增大而线性降低,栅藻的表面黏附容量比小球藻大。  相似文献   

8.
A series of poly(γ‐alkyl α L ‐glutamate)s with different alkyl groups were synthesized by the ring opening polymerization of corresponding α‐amino acid N‐carboxyanhydrides. The characteristics of these polyglutamate surfaces were evaluated by attenuated total reflectance Fourier transform infrared spectroscopy spectra, water contact angle, water absorption, protein adsorption, and platelet adhesion measurements. Changing the length of the alkyl side chain provides a unique opportunity to study the influence of carbon number in the alkyl group on the surface properties of the polyglutamates. Water contact angle and water absorption data show that the hydrophilicity of these polyglutamate surfaces decreases with the increasing of methylene in the alkyl group. Protein adsorption on these polyglutamate surfaces increases with the enhancing of surface hydrophobicity. However, the changes in platelets adhesion could be attributed to the hydrophilicity/hydrophobicity of the polyglutamates and the specific effect of alkyl group. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
This paper describes the synthesis of aromatic polyphosphates from the reaction of various aryl phosphorodichloridates with bisphenol AF in a chlorinated hydrocarbon solvent under low-temperature conditions. The polyphosphates obtained were characterized by IR,133C- and 31P-NMR spectra, elemental analysis, inherent viscosity, TGA, DSC, X-ray diffraction, LOI, contact angle and molar mass measurement. All the polyphosphates obtained had high yields and the inherent viscosities were in the range 0.25–0.31 dl g−1. The weight average molar masses ( ) were in the range 0.96 × 104−1.33 × 104 with relatively narrow molar mass distributions ( ). All the polymers, except polymer C, are stable up to 250°C, exhibited 10% loss of mass at 417–463°C, and had 20–30% residual mass at 700°C in nitrogen. The X-ray diffraction patterns revealed that all the polyphosphates are semicrystalline and polymer E, containing a flexible ether linkage, has a relatively large degree of crystallinity. The fluorine-containing polyphosphates have glass-transition temperatures between 81–108°C and polymer C, having a NO2 group in the side chain phenyl ring, has the highest Tg value. The polyphosphates obtained from bisphenol AF showed better thermal stabilities and higher LOI values than those obtained from bisphenol A. The polyphosphates have good flame retardancy, as indicated by high limiting oxygen index values in the range of 47–60. The water contact angles (θw) of all polyphosphates are in the range of 76–109°. The contact angles of polymers A and B are larger than other polyphosphates which contain more oxygen content or bromine atoms (polymers C, D and E).  相似文献   

10.
The importance of some relative surface characteristics which determines the strength of adhesive joints: specific surface of substrate , relative contact area β and specific contact area β in the adhesion interaction process were emphasised. Existing and potential methods of experimental evaluation of these characteristics were shortly analysed. The durability of the adhesive joints in water media significantly increases with growth of specific surface * of chemically treated substrate evaluated from the SEM micrographs. Specific surface calculated from the experimental data of hexane adsorption measurements for iron particles (particulate model of steel substrate) is more then ten times greater than respective * values. The relative contact area β of the Al2O3 particles (in wide range of ) with PE melt was in a roundabout way evaluated by experimental determination of the affect of on kinetic of peel strength formation of adhesive joints: Al2O3 filled PE-steel. The speculation was based on the ability of Al2O3 to adsorb low-molecular products of contact oxidation of PE which takes place in the process of formation of adhesive joints and determines their strength. The ability of sorption in its turn is proportional to efficient value of β. The availability of the Al2O3 surface was evaluated.  相似文献   

11.
Surface free energies of polyurethanes made from toluene diisocyanate and 1, 4 butanediol-based hard segments and caprolactone polyol-based soft segments were calculated using additive functions. Good agreement was found between the calculated values based on additive functions and the calculated values based on contact angle measurements. The phase-separated polyurethanes were found to have a higher polar surface free energy component (γP). This was linked to the preferential segregation of butanediol/butanediol-derived moieties to the polyurethane surfaces due to phase separation. The adhesion values of these polyurethanes to soda-lime glass were correlated with their respective γP values and a linear relationship was found. It was also shown that the adhesion values of the low γP polyurethanes improved substantially when the glass surfaces were coated with a thin layer of butanediol prior to the bonding. The modulus of the interphase region rich in butanediol was evaluated. Although a modulus increase was found at the interface, this increase was found to play a secondary role in the adhesion. The chemical interactions at the polyurethane/glass interphase were investigated by pre-treating the glass surfaces with methyl-trimethoxysilane and trimethylchlorosilane prior to adhesion testing. The adhesion data showed no significant difference between the uncoated and the silane-treated glass substrates. Based on this experimental evidence, the possibility of any covalent or ionic bonding at the polyurethane/glass interphase was assumed negligible. It was determined that the mechanism of adhesion between the polyurethanes and the glass surface could be through the formation of an interphase region in which hydrogen bonding between the butanediol-rich interphase region and the hydroxylated glass surface plays a key role.  相似文献   

12.
The reasons for the predominant electron-donicity of almost all solid polar surfaces and its implications are discussed in this paper. By contact angle or interfacial tension measurements, the electron-accepting as well as the electron-donating properties of polar liquids can be ascertained, through the interplay between their energies of adhesion and cohesion. For the solid-liquid interface, direct interfacial tension measurements are not possible, but indirectly, solid/liquid interfacial tensions of polar systems can be obtained by contact angle measurement. However, as the energy of cohesion of a solid does not influence the contact angle formed by a liquid drop placed upon its surface, one can only measure the solid surface'ks residual polar property, manifested by the energy of adhesion between solid and liquid. This residual polar property is of necessity the dominant component; in most cases this turns out to be its electron donicity. When, by means of contact angle measurements with polar liquids, both electron-accepting and electron-donating potentials are found on a polar solid, it is most likely still partly covered with a polar liquid: usually water. The amount of residual water of hydration of a polar solid follows from its polar (Lewis acid-base) surface tension component (γAB). The degree of orientation of the residual water of hydration on a polar solid can be expressed by the ratio of the electron-donating to electron-accepting potentials (γ?), measured on the hydrated surface.  相似文献   

13.
Solubility data of carbon dioxide (CO2) (1) in methanol (2), 1-octyl-3-methylimidazolium bis(trifluoro- methylsulfonyl)imide ([omim]+[Tf2N]-) (3), and their mixtures (w3 0.2, 0.5, and 0.8) at temperatures 313.2 and 333.2 K and pressures up to 7.0 MPa were measured by a high-pressure view-cell technique. The solubility of CO2 in methanol (w3=0), [omim]+[Tf2N]- (w3=1.0) and their mixtures follows the order of (w3=0)<(w3=0.2)< (w3=0.5)<(w3=0.8)<(w3=1.0) at the same temperature and pressure, while the magnitude of Henry's constants follows the reverse order at a given temperature, which is consistent with the COSMO-RS (conductor-like screening for real solvents) calculation. The solubility data of CO2 in methanol and [omim]+[Tf2N]- are correlated with the Peng-Robinson equation of state, and the solubility of CO2 in the mixtures of methanol and [omim]+[Tf2N]- can be well predicted based on the mole fraction average of methanol and [omim]+[Tf2N]- over the solubility of CO2 in pure methanol and [omim]+[Tf2N]-. The mixtures of methanol and [omim]+[Tf2N]- may be used as physical solvents for capturing CO2 with high partial pressures since they combine the advantages of organic solvents and ionic liquids.  相似文献   

14.
The adsorption of iron and cobalt terasulfonated phthalocyanines (TsPcs) on ordinary pyrolytic graphite has been investigated as a function of pH and ionic strength of the adsorption solution as well as the potential. The charge corresponding to the voltammetric redox peaks of adsorbed complexes was used as a measure of the surface concentration. Adsorption of CoTsPc occurs readily from its freshly prepared aqueous solutions and is generally independent of pH. For FeTsPc, however, adsorption does strongly depend on pH. High surface coverage is achieved only from acid solutions rather than from pure water and alkaline solutions. This can be explained in terms of the form(s) of the complexes existing in the solution phase in the presence of air. uv-Visible spectroscopic studies coupled with the addition of CN to the macrocycle solutions provide evidence that in pure water and alkaline solutions FeTsPc exists predominantly in the μ-oxo form (FeTsPc)2O, which seems not to favor the adsorption process. No evidence of the μ-oxo complex was found for FeTsPc in acid solutions and CoTsPc in aqueous solutions over the pH range examined (1–13). The adsorption of FeTsPc was at maximum when the potential was held at −0.55 V vs sce in 0.1 M NaOH.  相似文献   

15.
Different experimental methods have been used to determine the static contact angle hysteresis of the system polytetrafluoroethylene/water and the results compared. While the Wilhelmy plate method is not influenced by methodical variations, contact angles determined by the sessile drop and the pendant bubble methods vary with the drop or bubble diameter up to a minimal diameter dK of the contact area with the solid. This condition seems to be a universal one and should always be checked to ensure that the measured values are comparable. Contact angles calculated from the geometrical parameters of a drop or bubble should be used with care. The surface energetic characters for the PTFE/water are δθ = 19.5°, θa, e = 108.5° and θr, e = 89°.  相似文献   

16.
采用COSMO-SAC模型研究了不同离子液体存在下氨水溶液的汽液相平衡,探讨了离子液体的亲水性、酸碱性、阴阳离子种类以及功能基团修饰等对氨的相对挥发度的影响。研究发现,不同性质的离子液体均会影响氨水系统的汽液相平衡。一般地,如果水与离子液体相互作用能高于氨与水的相互作用能,离子液体将有利于氨的逸出。当阴离子亲水性和形成氢键的能力越强,或者水与阴离子相互作用能越强,或者氨与阳离子相互作用能越弱,则离子液体越能促进氨水分离。水/离子液体之间的相互作用能与氨/水之间的相互作用能差值越大,离子液体越能提高氨的相对挥发度。当水与离子液体相互作用能低于氨与水的相互作用能时,离子液体也能促进低浓度下的氨水分离。阴离子要比阳离子更能影响氨的相对挥发度,其中氯离子([Cl]-)、醋酸根离子([Ac]-)型离子液体对促进氨水分离的效果更佳。对于甲基咪唑类阳离子([C n mim]+,n=2、4、6、8),烷基链越长,越不利于氨的分离,但在[C2mim]+上嫁接胺基(—NH2)将会改善低浓度下氨水的分离效果。  相似文献   

17.
在湿法烟气脱硫系统运行时,因吸收剂循环使用,吸收塔内浆液中的氯离子会随着脱硫系统的运行逐渐富集,对脱硫系统和周边环境产生很大的危害,所以对脱硫废水的脱氯处理进行了研究。采用丙烯酸强碱性阴离子交换树脂,对比了静态及动态吸附条件下树脂对氯离子的吸附容量,研究了动态吸附条件下钙、镁离子质量浓度的变化以及树脂的再生性能,重点研究了在静态吸附条件下螯合剂和软水剂的添加对吸附过程中溶液pH以及氯、钙、镁离子质量浓度的影响,考察了静态吸附条件下树脂的再生性能。结果表明:在动态吸附条件下,由于絮状沉淀的影响,树脂的再生性能大大降低;在静态吸附条件下,树脂对氯离子的吸附容量比动态吸附条件少约30%,螯合剂和软水剂的添加有助于提高树脂的吸附容量,有助于降低废水pH(添加软水剂条件)和氯离子含量,有助于减少游离钙、镁离子产生的絮状沉淀对树脂吸附性能的影响并提高树脂的再生性能。  相似文献   

18.
Surface energies of amorphous cellulose “beads” were measured by IGC at different temperatures (50 to 100°C) using n-alkane probes (pentane to undecane). The equation of Schultz and Lavielle was applied which relates the specific retention volume of the gas probe to the dispersive component of the surface energy of the solid and liquid, γds and γdl, respectively, and a parameter (“a”) which represents the surface area of the gas probe in contact with the solids. At 50°C, γds was determined to be 71.5 mJ/m2, and its temperature dependence was 0.36 mJ m-2 K-1. Compared with measurements obtained by contact angle, IGC results were found to yield higher values, and especially a higher temperature dependence, d(γds)/dT. Various potential explanations for these elevated values were examined. The surface energy, as determined by the Schultz and Lavielle equation, was found to depend mostly on the parameter “a”. Two experimental conditions are known to affect the values of “a”: the solid surface and the temperature. While the surface effect of the parameter “a” was ignored in this study, the dependence of the surface energy upon temperature and probe phase was demonstrated to be significant. Several optional treatments of the parameter “a” were modeled. It was observed that both experimental imprecision, but mostly the fundamental difference between the liquid-solid vs the gas-solid system (and the associated theoretical weakness of the model used), could explain the differences between γds and d(γds)/dT measured by contact angle and IGC. It was concluded that the exaggerated temperature dependence of the IGC results is a consequence of limitations inherent in the definition of parameter “a”.  相似文献   

19.
The effect of film thickness and surface preparation techniques on contact angles of water, 1-bromonaphtalene, and n-hexadecane on Teflon® AF 1600 polymeric surfaces is studied. It was found that contact angles of water on different thicknesses of spin-coated films ranging from 27?nm to 420?nm are essentially constant. This is due to the homogeneity and smoothness of the coating layers as shown by the scanning force microscopy of the samples. Furthermore, the contact angle measurements with these three liquids on both dip-coated and spin-coated films suggested that the film preparation technique does not affect contact angles dramatically. Interestingly, slightly higher contact angles on dip-coated surfaces were measured. It is also argued that the anomaly of the water contact angle—in the sense that the measured contact angle is much higher than the expected ideal value—is due to specific interactions between water and Teflon®.  相似文献   

20.
Treatment of fluorinated ethylene propylene (FEP) and polytetrafluoroethylene (PTFE) by plasmas established in water vapour or ammonia gas enabled the rapid and facile modification of their surface chemistries. Under comparable plasma conditions, ammonia plasma exposures produced considerably lower air/water contact angles than water vapour plasmas. On storage of samples in air at ambient temperature, contact angles increased markedly within a few days on ammonia plasma-treated samples but remained constant over many weeks on water plasma-treated surfaces. Angle-dependent X-ray photoelectron spectroscopy (XPS) demonstrated a very low depth of modification in the case of ammonia plasma exposure, whereas the oxygen content of water plasma-treated samples was invariant with depth within the XPS analysis region. The long-term stability of water plasma-treated fluorocarbon polymer surfaces is believed to be due to this deep modification which prevents polymer chain reorientation, whereas the shallow modification in ammonia plasmas allows the rapid partial burial of the newly attached chemical groups inside the polymer. When ammonia plasma-treated samples stored in air were immersed in water, the contact angles remained constant, suggesting that the buried groups could not resurface. Contact angle measurements provided a simple and sensitive method for studying the time-dependent reduction in plasma treatment effects and the segmental mobility of modified fluorocarbon polymer surfaces; very shallow reorientation movements can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号