首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deactivation of catalysts based on either manganese oxides, copper oxides, platinum, palladium or combinations of these metal oxides and noble metals supported on γ-alumina was studied. The activity of the catalysts for the oxidation of carbon monoxide, naphthalene and methane, in a mixture resembling the flue gases from wood combustion, was measured before and after exposure of the catalysts either to a temperature of 900°C in the presence of steam or to sulphur dioxide. Most of the mixed catalysts were more resistant to hydrothermal and sulphur treatments than the catalysts with a single active component. After the hydrothermal treatment the activity of the MnOx catalyst was enhanced. When Pt is combined with MnOx or CuOx, the loss of activity of Pt was decreased during the hydrothermal treatment. Also, the hydrotreated mixed MnOx–Pd and CuOx–Pd catalysts were more active than the treated Pd catalyst for the oxidation of methane. After sulphur treatment, the activities of the mixed MnOx–Pt (Pt: 0.05 mol%), MnOx–Pd and CuOx–Pd catalysts were improved for the oxidation of carbon monoxide and naphthalene. Among the catalysts studied, the MnOx–Pt, CuOx–Pt and CuOx–Pd catalysts, with a metal oxide and a noble metal loading of 10 and 0.1 mol%/γ-alumina, respectively, had the best combination of activity, thermal stability and resistance to sulphur treatment.  相似文献   

2.
In this study, catalysts containing 0.5 wt.% of palladium or 5 wt.% of copper were compared towards toluene total oxidation using FAU Zeolite and ZrO2 supports. A 0.5%Pd/NaFAU and 5%Cu/ZrO2 were found to be promising catalysts for this reaction. Palladium presented then a better affinity for FAU zeolite and copper oxide had a better affinity for zirconia. The performances of Pd based catalysts were correlated to interaction between the active phase and the support whereas the activity of copper oxide was related to oxygen mobility property of the support leading to copper oxide particles easily reducible. Support modifications, yttrium addition for ZrO2 and cation exchange for the zeolite FAU, still enhanced the catalytic activity. Therefore, 0.5%Pd/CsFAU and 5%Cu/Zr95Y5 samples were found to be interesting catalysts for total VOC oxidation.  相似文献   

3.
The activity of a hopcalite-type catalyst for H2 and CO oxidation is compared with that of single-phase oxides CuO, Mn2O3 and CuMn2O4 (spinel) and a mixture of 1:1 CuO and Mn2O3 in order to elucidate the effects that are responsible for the high catalytic activity of the former. The reaction rates over the hopcalite catalyst calcined at 550°C (a mixture of CuO, Mn2O3 and CuMn2O4) are very close to those of the physical mixture of CuO and Mn2O3, being much greater than the rates over the single-phase oxides. CuO, Mn2O3 and CuMn2O4 show a kinetic compensation behavior both in H2 and CO oxidation. By taking into account the activation energies and the reducibility measured by TPR it was concluded that the oxidation reactions over CuO follow a redox mechanism using lattice oxygen, while over Mn2O3 the mechanism is associative involving adsorbed oxygen species. Based on the TPR and kinetic results, the synergy between copper and manganese oxides in hopcalite and in the CuO–Mn2O3 mixture is assigned to a spillover effect.  相似文献   

4.
María Roxana Morales 《Fuel》2008,87(7):1177-1186
Mixed oxides of manganese and copper with different wt% of copper have been prepared and evaluated in ethanol combustion. The co-precipitation method used for the synthesis of MnxCuy mixed oxides is adequate to obtain catalysts with excellent catalytic performance in combustion reactions. Catalysts were characterized by means of XRD, FT-IR, TPR and O2-TPD. A small amount of copper prevents manganese oxide reaching a crystalline structure. This poor crystalline structure of manganese oxide may improve the existence of oxygen vacancies giving a best performance in ethanol combustion to CO2. When the copper content increases, an extent of solid state reaction between Cu and Mn is favored and the partial oxidation of ethanol becomes more important. The incorporation of manganese into incomplete spinel structure diminishes CO2 yield.  相似文献   

5.
A synergetic effect in the catalytic activity has been found after palladium introduction in Mn–Al–O systems. The magnitude of the synergetic effect depends on the types of the oxidic manganese species: oxide Mn3O4, spinel (Mn, Mg)[Mn, Al]2O4 or hexaaluminate (Mn, Mg)LaAl11O19. The synergetic effect of Pd and manganese-containing compounds is observed only if palladium is introduced to the low-temperature precursor of the manganese alumina spinel or manganese hexaaluminate. The synergetic effect is not observed when high-temperature samples with formed spinel or hexaaluminate phases are modified with Pd.  相似文献   

6.
Kinetic study of CO oxidation in combination with experiments of temperature-programmed oxidation (TPO) and reduction (TPR) have been performed on various unsupported crystalline manganese oxides (MnOx); while the reactivity shows an order of MnO ≤ MnO2 < Mn2O3 in a mixture of unit ratio of O2/CO at/below 523 K. We propose that under the current conditions the interaction of adsorbed CO and O is mainly responsible for CO2 formation on Mn2O3 and MnO2 catalysts, following either the Langmuir–Hinshelwood mechanism or Eley–Rideal mechanism. Meanwhile, direct evidence from transient CO oxidation suggests that the Mars-van-Krevelen mechanism may occur for all catalysts simultaneously, especially, it is predominant for the MnO catalyst. The evidence of structural modifications during reaction was confirmed by Raman spectra obtained from used MnO.  相似文献   

7.
The effect of the nature of surface species on the activity and selectivity of MoO3/SiO2 catalysts has been investigated for the partial oxidation of methane to formaldehyde. Characterization techniques including BET surface area, ambient and in situ Raman spectroscopy, X-ray photoelectron spectroscopy, and temperature-programmed reduction were used in conjunction with steady-state reaction studies to relate the presence of different surface species to the activity and selectivity of the catalyst. Results of these experiments indicate the presence of a highly dispersed silicomolybdic species with terminal Mo=O sites appearing at lower MoO3 loadings. As the weight loading increases, these sites are transformed into polymolybdate species, forming more Mo-O-Mo bridging sites at the expense of Mo=O sites. At high weight loadings, crystalline MoO3 begins to form. The abundance of the Mo=O sites is believed to affect activity and selectivity in the partial oxidation of methane to formaldehyde.  相似文献   

8.
Combustion of CO, ethyl acetate and ethanol was studied over CuOx/Al2O3, CuOx–CeO2/Al2O3, CuMn2O4/Al2O3 and Mn2O3/Al2O3 catalysts. It was found that modification of the alumina with ceria before subsequent copper oxide deposition increases the activity for combustion of CO substantially, but the effect of ceria was small on the combustion of ethyl acetate and ethanol. The activity increases with the CuOx loading until crystalline CuO particles are formed, which contribute little to the total active surface. The CuOx–CeO2/Al2O3 catalyst is more active than the CuMn2O4/Al2O3 catalyst for the oxidation of CO but the CuMn2O4/Al2O3 catalyst is more active for the combustion of ethyl acetate and ethanol.

Thermal ageing and water vapour in the feed caused a modest decrease in activity and did not affect the CuOx–CeO2/Al2O3 and CuMn2O4/Al2O3 catalysts differently. In addition, no difference in intermediates formed over the two catalysts was observed.

Characterisation with XRD, FT-Raman and TPR indicates that the copper oxide is present as a copper aluminate surface phase on alumina at low loading. At high loading, bulk CuO crystallites are present as well. Modification of the alumina with ceria before the copper oxide deposition gives well dispersed copper oxide species and bulk CuO crystallites associated to the ceria, in addition to the two copper oxide species on the bare alumina. The distribution of copper species depends on the ceria and copper oxide loading. The alumina supported copper manganese oxide and manganese oxide catalysts consist mainly of crystalline CuMn2O4 and Mn2O3, respectively, on Al2O3.  相似文献   


9.
The catalytic activity of a mixed phase of copper–cobalt and copper–manganese oxides supported on magnesium fluorine or alumina has been studied in low temperature CO oxidation at 30 °C. During calcination, the oxides studied partially react to form different type spinels depending on the calcination temperature. These spinels have different effect on the catalytic activity. In low temperature CO oxidation the copper–manganese catalysts are more active than the copper–cobalt ones.  相似文献   

10.
A new facile and cost-effective process involving the solvent-free oxidation of benzyl alcohol using molecular oxygen as oxidant under controlled microwave irradiation has been developed for the production of chlorine-free benzaldehyde. Influence of different catalyst parameters (different manganese oxides and other kinds of transition metal oxides) and reaction conditions (reaction period and temperature) on the process performance has been studied. Under optimized reaction conditions, the MnO2 catalyst showed a superior catalytic performance in the highly selective oxidation of benzyl alcohol as compared to other manganese oxide materials such as MnO, Mn2O3 and Mn3O4. Moreover, a very stable catalytic activity as a function of cycling test was observed for the MnO2 catalyst.  相似文献   

11.
Copper-containing mesoporous manganese oxides were prepared by the sol–gel method. The samples obtained were characterized by XRD, N2 adsorption–desorption, ICP, CO-TPD, redox measurement and XPS. After calcination at 300 °C, amorphous structure was shown by XRD for all the samples. All the samples had mesopores of about 6 nm and high surface areas of 170–230 m2 g−1. Using these samples as catalysts, CO oxidation was carried out as a model reaction. Copper-containing mesoporous manganese oxide prepared by the sol–gel method showed a very high activity. On the other hand, copper-supported manganese oxide prepared by the impregnation method using copper sulfate showed a low activity. Differences in activities were correlated with the mobility of lattice oxygen.  相似文献   

12.
This work reports experimental measurements and a modelling study carried out on palladium and platinum based catalytic monoliths used as methane combustors for heating purposes. It concentrates on the effects of operating conditions on combustion, heat transfer efficiency and pollutant formation. The development of a detailed homogeneous/heterogeneous chemical kinetics model for methane–air combustion over palladium using literature data was undertaken to model the behaviour of one of the experimental catalytic heaters. In addition, a published detailed chemical mechanism for methane combustion over platinum was used in the platinum catalyst model. The fuel–air equivalence ratios ranged from 0.3 to 0.6 and the space velocities used were between 24 000 and 72 000 h−1. Although the model assumed perfectly stirred reactor (PSR) conditions and was applied to localised regions of the monoliths where little radial gradients of temperature and concentrations were measured, it predicted the surface temperature, methane slippage, CO and NOx at the downstream face of the monolith with reasonable accuracy in some cases, but also highlighted the shortcomings of the PSR assumption in other cases.  相似文献   

13.
Pt-Pd bimetal catalysts were prepared in order to develop and investigate catalysts with excellent activity and stability for benzene destruction. In the reaction results, the addition of Pt to Pd/γ-Al2O3 catalyst brought about the increase of catalytic activity. Moreover, it was effective in preventing the deactivation of the catalysts in benzene combustion. The addition of some amount of Pt made Pd particles available for better benzene combustion. On the contrary, the addition of Pt beyond a certain amount decreases activity because of the Pd active sites overlapped with the Pt active sites. The activity of the catalysts is related to oxidation state of metal, Pd/Al ratio and particle size on γ-Al2O3. These effects of Pt addition to Pd catalysts were studied by XPS, XRD, and TEM analyses.  相似文献   

14.
Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts   总被引:4,自引:0,他引:4  
Mn-Cu mixed oxides were prepared by co-precipitation varying the aging time for 4, 18 and 24 h. The catalytic performance in propane and ethanol total oxidation on these samples was better than on Mn2O3 and CuO pure oxides. The increase of the aging time enhanced the activity and the selectivity to CO2. The nature and disposition of the phases forming the catalytic system as well as the effect of the precipitated aging time was determined by means of specific surface area measurements, X-ray diffractometry (XRD), infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), temperature programmed reduction (TPR) and temperature programmed desorption of oxygen (O2-TPD). The catalytic behaviour seems related to the existence of a Cu1.5Mn1.5O4 mixed phase and the easier reducibility of the catalysts.  相似文献   

15.
Palladium precursors and solvents were studied for their effects on the activities of alumina-based palladium catalysts in methane combustion and the resistance of the catalysts to thermal aging. The properties of the catalysts were compared with those of a commercial reference. The palladium precursors were Pd(propionate)2, Pd(acetate)2 and Pd(acetyl acetonate)2 and the solvents were acetone, acetic acid, propionic acid and toluene. Catalysts were prepared by the wet impregnation method.Catalysts were characterized by powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDS). The surface areas were measured by Brunauer–Emmett–Teller method (BET). Acidity of the alumina support was measured by NH3 desorption. Activities of the catalysts in methane oxidation were screened under lean burn conditions.In methane oxidation with fresh catalyst, the best performance was obtained with a combination of Pd(acetate)2 and acetic or propionic acid. The light-off temperatures of the fresh catalysts (562 K and 557 K, respectively) were slightly lower than the light-off temperature (567 K) of the commercial reference. Differences between the light-off temperatures of the aged and fresh catalysts were least when the catalysts were prepared with Pd(acetyl acetonate)2 as Pd precursor and in acetic or propionic acid as solvent: +12 K and +18 K, respectively. The corresponding value for the reference was +64 K. For several of the fresh catalysts, conversion in methane oxidation at 623 K was over 90%. A comparison of methane combustion and NH3 desorption results indicated that acidity of the support material affects catalysts activity.  相似文献   

16.
Palladium catalysts supported on nanosized CeO2 supports were synthesized by different methods. The catalysts showed high low-temperature activity (LTA) in CO oxidation. The synthesized palladium–ceria catalysts for low-temperature CO oxidation were investigated by a complex of physicochemical methods, and their catalytic performance was determined in the light-off regime. It was shown using high-resolution transmission electron microscopy (HRTEM) and EDX microanalysis that the catalysts with high LTA are characterized by exceptionally high dispersity of palladium on the surface of the supports. Two different states of palladium were observed by XPS. They correspond to the surface interaction phases (SIPs) as PdxCeO2−δ and small metal clusters (<10 Å). According to diffraction images obtained by HRTEM, the latter have flattened shape due to epitaxial binding between (1 1 1) facets of palladium and CeO2. Two types of CO adsorption sites (Pd2+ and Pd0) were distinguished by FTIR. They can be attributed to SIP (Pd2+) and palladium in flat metal clusters (Pdδ+ and Pd0). The drop of LTA in CO oxidation is related to the loss of the palladium chemical interaction with the surface of the support and palladium sintering to form PdO nanoparticles. The formation of PdO particles is stimulated by crystallization of CeO2 particle surface due to the calcination of support at temperatures above 600 °C. The XPS, HRTEM and FTIR data give reliable evidence that PdO particles are not responsible for LTA in CO oxidation.In this work, the structure of the active sites consisting of two phases: atomically dispersed palladium within the SIP and palladium metal nanoclusters is proposed. The catalyst pretreatment in hydrogen was found to improve significantly its catalytic (LTA) properties. The effect of the hydrogen pretreatment was supposed to be related to the formation of hydroxyl groups and their effect on the electronic and geometrical state of the surface active sites and their possible direct participation in CO oxidation.  相似文献   

17.
Oxidation of propene and propane to CO2 and H2O has been studied over Au/Al2O3 and two different Au/CuO/Al2O3 (4 wt.% Au and 7.4 wt.% Au) catalysts and compared with the catalytic behaviour of Au/Co3O4/Al2O3 (4.1 wt.% Au) and Pt/Al2O3 (4.8 wt.% Pt) catalysts. The various characterization techniques employed (XRD, HRTEM, TPR and DR-UV–vis) revealed the presence of metallic gold, along with a highly dispersed CuO (6 wt.% CuO), or more crystalline CuO phase (12 wt.% CuO).

A higher CuO loading does not significantly influence the catalytic performance of the catalyst in propene oxidation, the gold loading appears to be more important. Moreover, it was found that 7.4Au/CuO/Al2O3 is almost as active as Pt/Al2O3, whereas Au/Co3O4/Al2O3 performs less than any of the CuO-containing gold-based catalysts.

The light-off temperature for C3H8 oxidation is significantly higher than for C3H6. For this reaction the particle size effect appears to prevail over the effect of gold loading. The most active catalysts are 4Au/CuO/Al2O3 (gold particles less than 3 nm) and 4Au/Co3O4/Al2O3 (gold particles less than 5 nm).  相似文献   


18.
Polypyrrole (PPy) films were deposited on copper from “green” inhibitor of phytic acid solution for corrosion protection of copper. The corrosion protection property of the PPy layer was studied by an immersion test in a NaCl aqueous solution. The polymerization process of PPy on copper changed with the pH values of phytic acid solution and current density applied. When one oxidized bare copper in phytic acid solution at various pHs containing pyrrole monomer, a thin layer consisting of complex compound of Cu-phytate was firstly formed, followed by the formation of the PPy layer doped with phytate anion on the complex compound layer. The complex compound layer passivated the copper surface and its thickness increased with the lower pH value of the solution and the lower current density applied. It was found that the PPy coating prepared in the phytic acid solution at pH 4 exhibit the most protective property against copper corrosion.  相似文献   

19.
This article highlights recent advances in the development of transition metal-based catalysts for formaldehyde oxidation, particularly the enhancement of their catalytic activity for low-temperature oxidation. Various factors that enhance low-temperature activity are reviewed, such as morphology and tunnel structures, synthesis methods, specific surface area, amount and type of active surface oxygen species, oxidation state, and density of active sites are discussed. In addition, catalyst immobilization for practical air purification, reaction mechanism of formaldehyde oxidation, and the reaction parameters affecting the overall efficiency of the reaction are also reviewed.  相似文献   

20.
The complete catalytic oxidation of 1,2-dichloroethane (DCE) and trichloroethylene (TCE) over alumina supported noble metal catalysts (Pt and Pd) was evaluated. Experiments were performed at conditions of lean hydrocarbon concentration (around 1000 ppm) in air, between 250°C and 550°C in a conventional fixed bed reactor. The catalysts were prepared in a range of metal contents from 0.1 to 1 wt%. Palladium catalysts resulted to be more active than platinum catalysts in the oxidation of both chlorinated volatile organic compounds. DCE was completely destructed at 375°C, whereas TCE required 550°C. HCl was the only chlorine-containing product in the oxidation of DCE in the range of 250–400°C. Tetrachloroethylene was observed as an intermediate in the oxidation of TCE, being formed to a significant extent between 400°C and 525°C. CO was also detected in the oxidation of both DCE and TCE over Pd catalysts, though at temperatures of complete destruction, CO2 was the only carbon-containing product. The Pt catalysts were selective to CO2 at the studied conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号