首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Colloidal photonic crystals possess inimitable optical properties of iridescent structural colors and unique spectral shape, which render them useful for security materials. This work reports a novel method to encrypt graphical and spectral codes in polymeric inverse opals to provide advanced security. To accomplish this, this study prepares lithographically featured micropatterns on the top surface of hydrophobic inverse opals, which serve as shadow masks against the surface modification of air cavities to achieve hydrophilicity. The resultant inverse opals allow rapid infiltration of aqueous solution into the hydrophilic cavities while retaining air in the hydrophobic cavities. Therefore, the structural color of inverse opals is regioselectively red‐shifted, disclosing the encrypted graphical codes. The decoded inverse opals also deliver unique reflectance spectral codes originated from two distinct regions. The combinatorial code composed of graphical and optical codes is revealed only when the aqueous solution agreed in advance is used for decoding. In addition, the encrypted inverse opals are chemically stable, providing invariant codes with high reproducibility. In addition, high mechanical stability enables the transfer of the films onto any surfaces. This novel encryption technology will provide a new opportunity in a wide range of security applications.  相似文献   

3.
4.
The development of luminescent materials with concurrent multimodal emissions is a great challenge to improve security and data storage density. Lanthanide‐doped nanocrystals are particularly appropriate for such applications for their abundant intermediate energy states and distinguishable spectroscopic profiles. However, traditional lanthanide luminescent nanoparticles have a limited capacity for information storage or complexity to shield against counterfeiting. Herein, it is demonstrated that the combination of upconverting and downshifting emissions in a particulate designed lanthanide‐doped core@multishell nanoarchitecture allows the generation of multicolor dual‐modal luminescence over a wide spectral range for complex information storage. Precise control of lanthanide dopants distribution in the core and distinct shells enables simultaneous excitation of 980/808 nm focusing/defocusing laser and 254 nm light and produces complex upconverting emissions from Er, Tm, Eu, and Tb via multiphoton energy transfer processes and downshifting emissions from Eu and Tb via efficient energy transfer from Ce to Eu/Tb in Gd‐assisted lattices. It is experimentally proven that multiple visualized anti‐counterfeit and information encryption with facile decryption and authentication using screen‐printing inks containing the present core@multishell nanocrystals are practically applicable by selecting different excitation modes.  相似文献   

5.
Materials exhibiting persistent luminescence (PersL) have great prospect in optoelectronic and biomedical applications such as optical information storage, bio‐imaging, and so on. Unfortunately, PersL materials with multimode emission properties have been rarely reported, although they are expected to be very desirable in multilevel anti‐counterfeiting and encryption applications. Herein, Cr3+‐doped zinc aluminum germanium (ZAG:Cr) nanoparticles exhibiting triple‐mode emissions are designed and demonstrated. Upon exposure to steady 254 nm UV light, the ZAG:Cr nanoparticles yield steady bluish‐white emission. After turning off the UV light, the emission disappears quickly and the mode switches to transient near‐infrared (NIR) PersL emission at predominantly 690 nm. The transient NIR PersL emission which arises from Cr3+ is induced by non‐equivalent substitution of Ge4+. After persisting for 50 min, it can be retriggered by 980 nm photons due to the continuous trap depth distribution of ZAG:Cr between 0.65 and 1.07 eV. Inspired by the triple‐mode emissions from ZAG:Cr, multifunctional luminescent inks composed of ZAG:Cr nanoparticles are prepared, and high‐security labeling and encoding encryption properties are demonstrated. The results indicate that ZAG:Cr nanoparticles have great potential in anti‐counterfeiting and encryption applications, and the strategy and concept described here provide insights into the design of advanced anti‐counterfeiting materials.  相似文献   

6.
7.
8.
9.
10.
11.
Spinel and perovskite with distinctive crystal structures are two of the most popular material families in electrocatalysis, which, however, usually show poor conductivity, causing a negative effect on the charge transfer process during electrochemical reactions. Herein, a highly conductive inverse spinel (Fe3O4) and anti‐perovskite (Ni3FeN) hetero‐structured nanocomposite is reported as a superior oxygen evolution electrocatalyst, which can be facilely prepared based on a one‐pot synthesis strategy. Thanks to the strong hybridization between Ni/Fe 3d and N 2p orbitals, the Ni3FeN is easily transformed into NiFe (oxy)hydroxide as the real active species during the oxygen evolution reaction (OER) process, while the Fe3O4 component with low O‐p band center relative to Fermi level is structurally stable. As a result, both high surface reactivity and bulk electronic transport ability are reached. By directly growing Fe3O4/Ni3FeN heterostructure on freestanding carbon fiber paper and testing based on the three‐electrode configuration, it requires only 160 mV overpotential to deliver a current density of 30 mA cm?2 for OER. Also, negligible performance decay is observed within a prolonged test period of 100 h. This work sheds light on the rational design of novel heterostructure materials for electrocatalysis.  相似文献   

12.
Bio‐microfluidics applies biomaterials and biologically inspired structural designs (biomimetics) to microfluidic devices. Microfluidics, the techniques for constraining fluids on the micrometer and sub‐micrometer scale, offer applications ranging from lab‐on‐a‐chip to optofluidics. Despite this wealth of applications, the design of typical microfluidic devices imparts relatively simple, laminar behavior on fluids and is realized using materials and techniques from silicon planar fabrication. On the other hand, highly complex microfluidic behavior is commonplace in nature, where fluids with nonlinear rheology flow through chaotic vasculature composed from a range of biopolymers. In this Review, the current state of bio‐microfluidic materials, designs and applications are examined. Biopolymers enable bio‐microfluidic devices with versatile functionalization chemistries, flexibility in fabrication, and biocompatibility in vitro and in vivo. Polymeric materials such as alginate, collagen, chitosan, and silk are being explored as bulk and film materials for bio‐microfluidics. Hydrogels offer options for mechanically functional devices for microfluidic systems such as self‐regulating valves, microlens arrays and drug release systems, vital for integrated bio‐microfluidic devices. These devices including growth factor gradients to study cell responses, blood analysis, biomimetic capillary designs, and blood vessel tissue culture systems, as some recent examples of inroads in the field that should lead the way in a new generation of microfluidic devices for bio‐related needs and applications. Perhaps one of the most intriguing directions for the future will be fully implantable microfluidic devices that will also integrate with existing vasculature and slowly degrade to fully recapitulate native tissue structure and function, yet serve critical interim functions, such as tissue maintenance, drug release, mechanical support, and cell delivery.  相似文献   

13.
Barcodes have attracted widespread attention, especially for the multiplexed bioassays and anti‐counterfeiting used toward medical and biomedical applications. An enabling gas‐shearing approach is presented for generating 10‐faced microspherical barcodes with precise control over the properties of each compartment. As such, the color of each compartment could be programmatically adjusted in the 10‐faced memomicrospheres by using pregel solutions containing different combinations of fluorescent nanoparticles. During the process, three primary colors (red, green, and blue) are adopted to obtain up to seven merged fluorescent colors for constituting a large amount of coding as well as a magnetic compartment, capable of effective and robust high‐throughput information‐storage. More importantly, by using the biocompatible sodium alginate to construct the multicolor microspherical barcodes, the proposed technology is likely to advance the fields of food and pharmaceutics anti‐counterfeiting. These remarkable properties point to the potential value of gas‐shearing in engineering microspherical barcodes for biomedical applications in the future.  相似文献   

14.
A novel approach for the design of functional coatings using fossil diatomaceous earth particles decorated by a thin layer of grafted polymer chains is reported. The polymer‐modified diatomaceous earth particles are able to form liquid marbles, superhydrophobic surfaces, and are highly promising for the design of anti‐icing coatings.  相似文献   

15.
16.
17.
This study examines platelet adhesion on surfaces that combine coatings to limit protein adsorption along with “anti‐platelet” nitric oxide (NO) release. Uncoated and poly‐2‐methoxyethylacrylate (PMEA) coated, gas permeable polypropylene (PP) membranes were placed in a bioreactor to separate plasma and gas flows. Nitrogen with 100/500/1000 ppm of NO was supplied to the gas side as a proof of concept. On the plasma side, platelet rich plasma (PRP, 1 × 108 cell/mL) was recirculated at low (60)/high (300) flows (mL/min). After 8 hours, adsorbed platelets on PP was quantified via a lactate dehydrogenase assay. Compared to plain PP, the PMEA coating alone reduced adsorption by 17.4 ± 9.2% and 29.6 ± 16.6% at low and high flow (p < 0.05), respectively. NO was more effective at low plasma flow. At 100 and 500 ppm of NO, adsorption fell by 37.9 ± 6.1% and 100 ± 4.7%, (p < 0.001), on plain PP. At high flow with 100, 500, and 1000 ppm of NO, adsorption reduced by 17.9 ± 17.8%, 46.4 ± 23.2%, and 100 ± 4.8%, (p < 0.001), respectively. On PMEA‐coated PP with only 100 ppm, adsorption fell by 69.7 ± 6.8 and 65.6% ± 16.9%, (p < 0.001), at low and high flows respectively. Therefore, the combination of an anti‐adsorptive coating with NO has great potential to reduce platelet adhesion and coagulation at biomaterial surfaces.  相似文献   

18.
The detrimental impacts of icing on transportation and power industries are well‐known. Inspired by natural systems that secrete a functional liquid in response to stimuli, this work introduces an anti‐icing coating that responds to surface icing by releasing antifreeze liquid. It consists of an outer porous superhydrophobic epidermis and a wick‐like underlying dermis that is infused with antifreeze liquid. The functionality of the new coating is validated through condensation frosting, simulated freezing fog, and freezing rain experiments. In the tested conditions, the introduced anti‐icing skin delays onset of frost, rime, and glaze accumulation at least ten times longer than anti‐icing superhydrophobic and lubricant impregnated surfaces. Furthermore, the coating delays onset of glaze formation ten times longer than surfaces flooded with a thin film of antifreeze. In each of the icing scenarios, the fundamental mechanisms responsible for antifreeze release and their relation to required antifreeze replenishment rates are described.  相似文献   

19.
20.
Single‐component multicolor luminescence, particularly phosphorescence materials are highly attractive both in numerous applications and in‐depth understanding the light‐emission processes, but formidable challenges still exist for preparing such materials. Herein, a very facile approach is reported to synthesize carbon dots (CDs) (named MP‐CDs) that exhibit multicolor fluorescence (FL), and more remarkably, multicolor long‐lived room temperature phosphorescence (RTP) under ambient conditions. The FL and RTP colors of the CDs powder are observed to change from blue to green and cyan to yellow, respectively, with the excitation wavelength shifting from 254 to 420 nm. Further studies demonstrate that the multicolor emissions can be attributed to the existence of multiple emitting centers in the CDs and the relatively higher reaction temperature plays a critical role for achieving RTP. Given the unique optical properties, a preliminary application of MP‐CDs in advanced anti‐counterfeiting is presented. This study not only proposes a strategy to prepare photo‐stimulated multicolor RTP materials, but also reveals great potentials of CDs in exploiting novel optical materials with unique properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号