首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Herein, the novel concept of a solid‐state electrode materials with ionic‐liquid (IL) properties is presented. These composite materials are a mixture of electroactive matter, an electronic conductor, a solid‐state ionic conductor and a polymeric binder. The approach of a solid‐state ionic conductor combines the high safety of an IL with the nanoconfinement of such a liquid in a mesoporous silica framework, an ionogel, thus leading to a solid with liquid‐like ionic properties. The same ionic conductor is also used as a solid‐state separator to evaluate the properties of our solid‐state electrode materials in all‐solid‐state batteries. Such a concept of a solid‐state electrode material contributes to addressing the challenge of energy storage, which is one of the major challenges of the 21st century. The ionogel, along with its processability, allows a single‐step preparation of the assembly of the solid‐state electrode and solid‐electrolyte separator and can be applied without specific adaptation to present, thick electrodes prepared by the widespread tape‐casting technique. The filling of the electrode porosity by an ionogel is shown by elemental mapping using scanning electron microscopy, and is subsequently confirmed by electrochemical measurements. The ionogel approach is successfully applied without specific adaptation to two state‐of‐the‐art, positive electroactive materials developed for future‐generation lithium‐ion batteries, namely LiFePO4 and LiNi1/3Mn1/3Co1/3O2.  相似文献   

2.
Here, the operation of a field‐effect transistor based on a single InAs nanowire gated by an ionic liquid is reported. Liquid gating yields very efficient carrier modulation with a transconductance value 30 times larger than standard back gating with the SiO2/Si++ substrate. Thanks to this wide modulation, the controlled evolution from semiconductor to metallic‐like behavior in the nanowire is shown. This work provides the first systematic study of ionic‐liquid gating in electronic devices based on individual III–V semiconductor nanowires: this architecture opens the way to a wide range of fundamental and applied studies from the phase transitions to bioelectronics.  相似文献   

3.
Liquid‐polymer films sandwiched between two electrodes develop a surface instability caused by the electric field, giving rise to polymer structures that span the two plates. This study investigates the development of the resulting polymer morphologies as a function of time. The initial phase of the structure formation process is a sinusoidal surface undulation, irrespective of the sample parameters. The later stages of pattern formation depend on the relative amount of polymer in the capacitor gap (filling ratio). For high enough filling ratios, the final morphology of the pattern is determined by the partial coalescence of the initial pattern. The introduction of lateral‐field heterogeneities influences the initial pattern formation, with columns nucleated at locations of highest electric field (isolated points or edges). The subsequently formed secondary columns have higher degree of lateral symmetry compared to the pattern formed in a homogeneous field. The nucleation of individual columns or plugs also dominates the pattern formation in the presence of an electrode consisting of an array of lines. The results of this study therefore allow us to draw the conclusion that the accurate replication of structured electrodes typically proceeds by the initial nucleation of individual columns, followed by a coalescence process that yields the polymer replica.  相似文献   

4.
Many publications report on stimuli responsive coatings, but only a few on the controlled release of species in order to change the coating surface properties. A sponge‐like coating that is able to release and absorb a liquid upon exposure to light has been developed. The morphology of the porous coating is controlled by the smectic liquid crystal properties of the monomer mixture prior to its polymerization, and homeotropic order is found to give the largest contraction. The fast release of the liquid can be induced by a macroscopic contraction of the coating caused by a trans to cis conversion of a copolymerized azobenzene moiety. The liquid secretion can be localized by local light exposure or by creating a surface relief. The uptake of liquid proceeds by stimulating the back reaction of the azo compound by exposure at higher wavelength or by thermal relaxation. The surface forces of the sponge‐like coating in contact with an opposing surface can be controlled by light‐induced capillary bridging revealing that the controlled release of liquid gives access to tunable adhesion.  相似文献   

5.
A new method for complex metallic architecture fabrication is presented, through synthesis and 3D‐printing of a new class of 3D‐inks into green‐body structures followed by thermochemical transformation into sintered metallic counterparts. Small and large volumes of metal‐oxide, metal, and metal compound 3D‐printable inks are synthesized through simple mixing of solvent, powder, and the biomedical elastomer, polylactic‐co‐glycolic acid (PLGA). These inks can be 3D‐printed under ambient conditions via simple extrusion at speeds upwards of 150 mm s–1 into millimeter‐ and centimeter‐scale thin, thick, high aspect ratio, hollow and enclosed, and multi‐material architectures. The resulting 3D‐printed green‐bodies can be handled immediately, are remarkably robust, and may be further manipulated prior to metallic transformation. Green‐bodies are transformed into metallic counterparts without warping or cracking through reduction and sintering in a H2 atmosphere at elevated temperatures. It is shown that primary metal and binary alloy structures can be created from inks comprised of single and mixed oxide powders, and the versatility of the process is illustrated through its extension to more than two dozen additional metal‐based materials. A potential application of this new system is briefly demonstrated through cyclic reduction and oxidation of 3D‐printed iron oxide constructs, which remain intact through numerous redox cycles.  相似文献   

6.
Three‐dimensional structures that undergo reversible shape changes in response to mild stimuli enable a wide range of smart devices, such as soft robots or implantable medical devices. Herein, a dual thiol‐ene reaction scheme is used to synthesize a class of liquid crystal (LC) elastomers that can be 3D printed into complex shapes and subsequently undergo controlled shape change. Through controlling the phase transition temperature of polymerizable LC inks, morphing 3D structures with tunable actuation temperature (28 ± 2 to 105 ± 1 °C) are fabricated. Finally, multiple LC inks are 3D printed into single structures to allow for the production of untethered, thermo‐responsive structures that sequentially and reversibly undergo multiple shape changes.  相似文献   

7.
8.
Phase‐change random‐access memory relies on the reversible crystalline‐glassy phase change in chalcogenide thin films. In this application, the speed of crystallization is critical for device performance: there is a need to combine ultrafast crystallization for switching at high temperature with high resistance to crystallization for non‐volatile data retention near to room temperature. In phase‐change media such as nucleation‐dominated Ge2Sb2Te5, these conflicting requirements are met through the highly “fragile” nature of the temperature dependence of the viscosity of the supercooled liquid. The present study explores, using ultrafast‐heating calorimetry, the equivalent temperature dependence for the growth‐dominated medium Ag‐In‐Sb‐Te. The crystallization shows (unexpectedly) Arrhenius temperature dependence over a wide intermediate temperature range. Here it is shown that this is evidence for a fragile‐to‐strong crossover on cooling the liquid. Such a crossover has many consequences for the interpretation and control of phase‐change kinetics in chalcogenide media, helping to understand the distinction between nucleation‐ and growth‐dominated crystallization, and offering a route to designing improved device performance.  相似文献   

9.
Using the example of Li‐battery electrolytes, the importance of the concept of conservative ensembles for polarization behavior and transference measurements of salt‐containing liquid electrolytes is stressed. The conventional evaluation of the stationary values fails if the ion pair is mobile and can act as a vehicle of a single ion such as Li+. The necessary generalization is considered. While the analytical form of the time dependence of voltage or current is not affected provided the ion pairing is sufficiently fast, the diffusion coefficient contains nontrivial extra contributions. Finally, soggy‐sand electrolytes are inspected, in which polarization occurs in the space‐charge zones.  相似文献   

10.
Design and fabrication of photomechanical soft actuators has attracted intense scientific interest because of their potential in the manufacture of untethered intelligent soft robots and advanced functional devices. Trifunctional and monofunctional polymerizable molecular motors are judiciously designed and synthesized. Novel light‐driven liquid crystalline networks (LCN) are prepared by crosslinking overcrowded‐alkene‐based molecular motors with different degrees of freedom into the anisotropic LCN. The photoisomerization and thermal helix inversion of light‐driven molecular motors are reversible when only the upper part of the molecular motor is linked to the network, endowing the LCN film with remarkable photoactive performance. However, photochemical geometric change of the light‐driven molecular motor does not work after crosslinking both the upper and lower part of the motor by polymer chains. Interestingly, it is found that the fastened motor can transfer the light energy into localized heat instead of performing photoisomerization. The light‐driven molecular‐motor‐based LCN soft actuators are demonstrated to function as a grasping hand, where the continuous motions of grasping, moving, lifting, and releasing an object are successfully achieved. This work may provide inspiration to the preparation of next‐generation photoactive advanced functional materials toward their wide applications in the areas of photonics, optoelectronics, soft robotics, and beyond.  相似文献   

11.
Surface engineering of silicon nanocrystals directly in water or ethanol by atmospheric‐pressure dc microplasma is reported. In both liquids, microplasma processing stabilizes the optoelectronic properties of silicon nanocrystals. The microplasma treatment induces non‐equilibrium liquid chemistry that passivates the silicon nanocrystals surface with oxygen‐/organic‐based terminations. In particular, the microplasma treatment in ethanol drastically enhances the silicon nanocrystals photoluminescence intensity and causes a clear red‐shift (≈80 nm) of the photoluminescence maximum. The photoluminescence properties are stable after several days of storage in either ethanol or water. The surface chemistry induced by the microplasma treatment is analyzed and discussed.  相似文献   

12.
Ionic liquids have been identified as a new class of solvent that offers opportunities to move away from the traditional solvents. The physical‐chemical properties of ionic liquids can be tuned and controlled by tailoring their structures. The typical properties of ionic liquids, such as non‐volatility, electrochemical stability and high conductivity, render them attractive as electrolytes for dye‐sensitized solar cells. However, the high viscosity of ionic liquids leads to mass transport limitations on the photocurrents in the solar cells at full sunlight intensity, but the contribution of a Grotthous‐type exchange mechanism in these viscous electrolytes helps to alleviate these diffusion problems. This article discusses recent developments in the field of high‐performance dye‐sensitized solar cells with ionic liquid‐based electrolytes and their characterization by electrochemical impedance analysis.  相似文献   

13.
The induction of electrohydrodynamic instabilities in nematic liquid crystals through light illumination are reported. For this purpose, a photochromic spiropyran is added to the liquid crystal mixture. When an electrical field is applied in the absence of UV light, the homeotropic liquid crystal reorients perpendicular to the electrical field driven by its negative dielectric anisotropy. Upon exposure to UV light, the nonionic spiropyran isomerizes to the zwitterionic merocyanine form inducing electrohydrodynamic instabilities which turns the cell from transparent into highly scattering. The reverse isomerization to closed‐ring spiropyran form occurs thermally or under visible light, which stops the electrohydrodynamic instabilities and the cell becomes transparent again. It is demonstrated that the photoionic electrohydrodynamic instabilities can be used for light regulation. Local exposure, either to drive the electrohydrodynamics or to remove them enables the formation of colored images.  相似文献   

14.
15.
As electrical energy storage and delivery devices, carbon‐based electrical double‐layer capacitors (EDLCs) have attracted much attention for advancing the energy‐efficient economy. Conventional methods for activated carbon (AC) synthesis offer limited control of their surface area and porosity, which results in a typical specific capacitance of 70–120 F g?1 in commercial EDLCs based on organic electrolytes and ionic liquids (ILs). Additionally, typical ACs produced from natural precursors suffer from the significant variation of their properties, which is detrimental for EDLC use in automotive applications. A novel method for AC synthesis for EDLCs is proposed. This method is based on direct activation of synthetic polymers. The proposed procedure allowed us to produce ACs with ultrahigh specific surface area of up to 3432 m2 g?1 and volume of 0.5–4 nm pores up to 2.39 cm3 g?1. The application of the produced carbons in EDLCs based on IL electrolyte showed specific capacitance approaching 300 F g?1, which is unprecedented for carbon materials, and 5–8% performance improvement after 10 000 charge–discharge cycles at the very high current density of 10 A g?1. The remarkable characteristics of the produced materials and the capability of the fabricated EDLCs to operate safely in a wide electrochemical window at elevated temperatures, suggest that the proposed synthesis route offers excellent potential for large‐scale material production for EDLC use in electric vehicles and industrial applications.  相似文献   

16.
Azobenzene‐containing liquid crystal polymer networks (LCNs) are developed for temperature‐ and light‐regulated gas permeation. The order in a chiral‐nematic LCN (LCN*) is found to be essential to couple the unique structure of the membrane and its gas permeation responses to external stimuli such as temperature and varying irradiation conditions. An LCN membrane polymerized in the isotropic phase exhibits enhanced N2 permeation with increasing temperature, like most traditional polymers, but barely responds to exposure with 455 and 365 nm light. In sharp contrast, a reversible decrease of N2 transport is observed for the LCN* membrane of exactly the same chemical composition, but molecularly ordered, when submitted to an elevated temperature. More importantly, alternating in situ illumination with 455 and 365 nm light modulates reversibly N2 permeation performance of the LCN* membrane, through the transcis isomerization of azo moieties. The authors postulate that, besides the anisotropic deformation of LCN*, the decreased order in LCN* membrane caused by external stimuli (i.e., increasing temperature or UV light illumination) is responsible for an inhibition of gas permeation. These results show potential applications of liquid crystal polymers in the gas transport and separation, and also contribute to the development of “smart” membranes.  相似文献   

17.
A robust and stable narrow‐band green emitter is recognized as a key enabler for wide‐color‐gamut liquid crystal display (LCD) backlights. Herein, an emerging rare earth silicate phosphor, RbNa(Li3SiO4)2:Eu2+ (RN:Eu2+) with exceptional optical properties and excellent thermal stability, is reported. The resulting RN:Eu2+ phosphor presents a narrow green emission band centered at 523 nm with a full width at half maximum of 41 nm and excellent thermal stability (102%@425 K of the integrated emission intensity at 300 K). RN:Eu2+ also shows a high quantum efficiency, an improved chemical stability, and a reduced Stokes shift owing to the modified local environment, in which [NaO8] cubes replace [LiO4] squares in RbLi(Li3SiO4)2:Eu2+ via polyhedron transformation. White light‐emitting diode (wLED) devices with a wide color gamut (113% National Television System Committee (NTSC)) and high luminous efficacy (111.08 lm W?1) are obtained by combining RN:Eu2+ as the green emitter, K2SiF6:Mn4+ as the red emitter, and blue‐emitting InGaN chips. Using these wLEDs as backlights, a prototype 20.5 in. LCD screen is fabricated, demonstrating the bright future of stable RN:Eu2+ for wide‐color‐gamut LCD backlight application.  相似文献   

18.
Periodic micro‐arrays of straight linear defects containing nanoparticles can be created over large surface areas at the transition from the nematic to smectic‐A phase in a nanoparticle–liquid crystal (LC) composite material confined under the effect of conflicting anchoring conditions (unidirectional planar vs normal) and electric fields. Anisomeric dichroic dye molecules and rod‐shaped fluorescent semiconductor nanocrystals (dot‐in‐rods) with large permanent electric dipole and high linearly polarized photoluminescence quantum yield align parallel to the local LC molecular director and follow its reorientation under application of the electric field. In the nano‐sized core regions of linear defects, where the director is undefined, anisotropic particles align parallel to the defect whereas spherical quantum dots do not show any particular interaction with the defect. Under application of an electric field, ferroelectric semiconductor nanoparticles in the core region align along the field, perpendicular to the defect direction, whereas dichroic dyes remain parallel to the defect. This study provides useful insights into the complex interaction of anisotropic nanoparticles and anisotropic soft materials such as LCs in the presence of external fields, which may help the development of field‐responsive nanoparticle‐based functional materials.  相似文献   

19.
The synthesis and study of the photo‐ and thermoresponsive behavior of a series of novel trimesogens consisting of a diphenylbutadiene core linked to cholesterol moieties on either side via flexible alkyl chains are reported. These molecules possess the combined glass‐forming properties of bischolesterols and the photochromic and luminescent properties of the butadiene moiety. The pitch of the cholesteric phase of these materials could be continuously varied thermally and photochemically, making it possible to tune the color of the film over the entire visible region. The color images thus generated could be stabilized by converting them to N* glasses. These materials were also highly photoluminescent, exhibiting circularly polarized characteristics in the glassy liquid‐crystalline state even by linearly polarized excitation.  相似文献   

20.
Poly(2,5‐Bis(3‐alkylthiophen‐2‐yl)thieno[3,2‐b]thiophenes (pBTTTs) are a new class of solution‐processable polymer semiconductors with high charge carrier mobilities that rival amorphous silicon. This exceptional performance is thought to originate in the microstructure of pBTTT films, which exhibit high crystallinity and a surface topography of wide terraces. However, the true lateral grain size has not been determined, despite the critical impact grain boundaries can have on the charge transport of polymer semiconductors. Here a strategy for determining the lateral grain structure of pBTTT using dark‐field transmission electron microscopy (DF‐TEM) and subsequent image analysis is presented. For the first time, it is revealed that the in‐plain pBTTT crystal orientation varies smoothly across a length scale significantly less than one micrometer (e.g., with only small angles between adjacent diffracting regions). The pBTTT polymers thus exhibit an in‐plane liquid crystalline texture. This microstructure is different from what has been reported for small molecule semiconductors or polymer semiconductors such as poly(3‐hexyl thiophene) (P3HT). Even though films processed differently exhibit different apparent domain sizes, they exhibit similar charge carrier hopping activation energies because they possess similar low densities of abrupt grain boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号