首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Managing the mechanical mismatch between hard semiconductor components and soft biological tissues represents a key challenge in the development of advanced forms of wearable electronic devices. An ultralow modulus material or a liquid that surrounds the electronics and resides in a thin elastomeric shell provides a strain‐isolation effect that enhances not only the wearability but also the range of stretchability in suitably designed devices. The results presented here build on these concepts by (1) replacing traditional liquids explored in the past, which have some nonnegligible vapor pressure and finite permeability through the encapsulating elastomers, with ionic liquids to eliminate any possibility for leakage or evaporation, and (2) positioning the liquid between the electronics and the skin, within an enclosed, elastomeric microfluidic space, but not in direct contact with the active elements of the system, to avoid any negative consequences on electronic performance. Combined experimental and theoretical results establish the strain‐isolating effects of this system, and the considerations that dictate mechanical collapse of the fluid‐filled cavity. Examples in skin‐mounted wearable include wireless sensors for measuring temperature and wired systems for recording mechano‐acoustic responses.  相似文献   

5.
6.
Next-generation wearable electronics will need to be mechanically flexible and stretchable such that they can be conformally attached onto the human body. Photodetectors that are available in today's market are based on rigid inorganic crystalline materials and they have limited mechanical flexibility. In contrast, photodetectors based on organic polymers and molecules have emerged as promising alternatives due to their inherent mechanical softness, ease of processing, tunable optoelectronic properties, good light sensing performance, and biocompatibility. Here, the recent advances of organic photodetectors in terms of both optoelectronic and mechanical properties are outlined and discussed, and their application in wearable electronics including health monitoring sensors, artificial vision, and self-powering integrated devices are highlighted.  相似文献   

7.
8.
Flexible gallium nitride (GaN) thin films can enable future strainable and conformal devices for transmission of radio‐frequency (RF) signals over large distances for more efficient wireless communication. For the first time, strainable high‐frequency RF GaN devices are demonstrated, whose exceptional performance is enabled by epitaxial growth on 2D boron nitride for chemical‐free transfer to a soft, flexible substrate. The AlGaN/GaN heterostructures transferred to flexible substrates are uniaxially strained up to 0.85% and reveal near state‐of‐the‐art values for electrical performance, with electron mobility exceeding 2000 cm2 V?1 s?1 and sheet carrier density above 1.07 × 1013 cm?2. The influence of strain on the RF performance of flexible GaN high‐electron‐mobility transistor (HEMT) devices is evaluated, demonstrating cutoff frequencies and maximum oscillation frequencies greater than 42 and 74 GHz, respectively, at up to 0.43% strain, representing a significant advancement toward conformal, highly integrated electronic materials for RF applications.  相似文献   

9.
10.
11.
12.
刘世朴  李艳  王麒郦 《包装工程》2019,40(13):246-251
目的 为清晰直观地认识凹胶印刷电子油墨铺展过程的微观机理。方法 根据油墨铺展运动过程,建立其静态的物理和几何模型,利用幂律流体理论,分析油墨粘度与剪切速率之间的关系,特别是纳米银导电油墨的幂律流体函数模型,最后利用实验验证这一模型的正确性。结果 幂律流体理论表明,纳米银导电油墨的粘度与剪切速率存在 的数量关系,实验结果表明,在印刷压力为49 N,线宽扩大率最大时,印刷速度为21.88 mm/s,验证该条件下的方阻值为5.915 Ω;在印刷速度为45 mm/s,线宽扩大率最大时,印刷压力为49.36 N,验证该条件下的方阻值为5.908 Ω;在印刷压力为49 N,印刷速度为45 mm/s下,线宽扩大率最大时,油墨粘度为0.78 Pa?s,验证该条件下的方阻值为4.8998 Ω;油墨粘度η与印刷速度v之间存在 的函数关系。结论 纳米银导电油墨是一种假塑性流体,其粘度与剪切速率呈负相关变化,剪切速率是影响油墨铺展过程的关键参数。  相似文献   

13.
The wearable industry is on the rise, with a myriad of technical applications ranging from real-time health monitoring, the Internet of Things, and robotics, to name but a few. However, there is a saying “wearable is not wearable” because the current market-available wearable sensors are largely bulky and rigid, leading to uncomfortable wearing experience, motion artefacts, and poor data accuracy. This has aroused a world-wide intensive research quest for novel materials, with the aim of fabricating next-generation ultra-lightweight and soft wearable devices. Such disruptive second-skin-like biosensing technologies may enable a paradigm shift from current wearable 1.0 to future wearable 2.0 products. Here, the state-of-the-art progress made in the key phases for future wearable technology, namely, wear → sense → communicate → analyze → interpret → decide, is summarized. Without a doubt, materials innovation is the key, which is the main focus of the discussion. In addition, emphasis is also given to wearable energy, multicomponent integration, and wireless communication.  相似文献   

14.
Flexible and implantable electronics hold tremendous promises for advanced healthcare applications, especially for physiological neural recording and modulations. Key requirements in neural interfaces include miniature dimensions for spatial physiological mapping and low impedance for recognizing small biopotential signals. Herein, a bottom-up mesoporous formation technique and a top-down microlithography process are integrated to create flexible and low-impedance mesoporous gold (Au) electrodes for biosensing and bioimplant applications. The mesoporous architectures developed on a thin and soft polymeric substrate provide excellent mechanical flexibility and stable electrical characteristics capable of sustaining multiple bending cycles. The large surface areas formed within the mesoporous network allow for high current density transfer in standard electrolytes, highly suitable for biological sensing applications as demonstrated in glucose sensors with an excellent detection limit of 1.95 µm and high sensitivity of 6.1 mA cm−2 µM−1, which is approximately six times higher than that of benchmarking flat/non-porous films. The low impedance of less than 1 kΩ at 1 kHz in the as-synthesized mesoporous electrodes, along with their mechanical flexibility and durability, offer peripheral nerve recording functionalities that are successfully demonstrated in vivo. These features highlight the new possibilities of our novel flexible nanoarchitectonics for neuronal recording and modulation applications.  相似文献   

15.
16.
17.
18.
19.
This paper introduces materials and architectures for ultrathin, stretchable wireless sensors that mount on functional elastomeric substrates for epidermal analysis of biofluids. Measurement of the volume and chemical properties of sweat via dielectric detection and colorimetry demonstrates some capabilities. Here, inductively coupled sensors consisting of LC resonators with capacitive electrodes show systematic responses to sweat collected in microporous substrates. Interrogation occurs through external coils placed in physical proximity to the devices. The substrates allow spontaneous sweat collection through capillary forces, without the need for complex microfluidic handling systems. Furthermore, colorimetric measurement modes are possible in the same system by introducing indicator compounds into the depths of the substrates, for sensing specific components (OH?, H+, Cu+, and Fe2+) in the sweat. The complete devices offer Young's moduli that are similar to skin, thus allowing highly effective and reliable skin integration without external fixtures. Experimental results demonstrate volumetric measurement of sweat with an accuracy of 0.06 μL/mm2 with good stability and low drift. Colorimetric responses to pH and concentrations of various ions provide capabilities relevant to analysis of sweat. Similar materials and device designs can be used in monitoring other body fluids.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号