首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of Cr, Yb and Zr additions on localized corrosion of Al–Zn–Mg–Cu alloy has been investigated. Additions of Cr, Yb and Zr to Al–Zn–Mg–Cu alloy stabilized the deformation-recovery microstructure with low angle grain boundaries on which grain boundary precipitates distributed discretely. The exfoliation and stress corrosion cracking of Al–Zn–Mg–Cu alloys propagated along the high angle recrystallized grain boundaries. The unrecrystallized Al–Zn–Mg–Cu–Zr–Cr–Yb alloy exhibited higher resistance to stress corrosion cracking and exfoliation corrosion, compared to the partial recrystallized Al–Zn–Mg–Cu–Zr alloy with high angle grain boundaries.  相似文献   

2.
The influence of Si on the corrosion behaviour of Al–5Zn–0.03In–1Mg–0.05Ti (wt.%) alloy was investigated by the microstructure observation and electrochemical measurements in order to improve its corrosion non-uniform and electrochemical properties. The main precipitates in Al–5Zn–0.03In–1Mg–0.05Ti–0.1Si (wt.%) alloy is Mg2Si phase, which decrease the galvanic corrosion because the potential difference between Mg2Si and a-Al is smaller than that between MgZn2 and a-Al. The addition of Si improves the corrosion uniformity of the anode due to the fine equiaxed grains and grain boundaries where Mg2Si particles uniformly distributed. The results indicate that the microstructure, electrochemical characteristics and corrosion uniformity can be improved significantly after adding 0.1 wt.% Si into Al–5Zn–0.03In–1Mg–0.05Ti (wt.%) alloy.  相似文献   

3.
The effects of a deposition current density (c.d.) on the corrosion behaviour of Zn–Mn alloy coatings, deposited from alkaline pyrophosphate solution, were investigated by atomic absorption spectrophotometry (AAS), X-ray diffraction (XRD), atomic force microscopy (AFM), optical microscopy, electrochemical impedance spectroscopy (EIS) and measurement of corrosion potential (Ecorr). XRD analysis disclosed that zinc hydroxide chloride was the main corrosion product on Zn–Mn coatings immersed in 0.5 mol dm−3 NaCl solution. EIS investigations revealed that less porous protective layer was produced on the alloy coating deposited at c.d. of 30 mA cm−2 as compared to that deposited at 80 mA cm−2.  相似文献   

4.
This study investigates the formation of a chromate conversion coating at Al–Cu–Fe–Mn intermetallic sites of an Al2219 alloy and the corrosion initiation at these sites in a 3.5% NaCl solution, using SEM, AES and EDX. Changes in the surface chemistry were monitored after progressive exposures to the solution up to 42 h. The coating was found to be thinner and more defective on the intermetallic. Initially, Al is dissolved and Al(OH)3 deposited on and around the intermetallic. After 42 h of exposure, Al(OH)3, Fe and Mn oxides and small particles of elemental Cu are deposited as corrosion products.  相似文献   

5.
In order to improve the non-uniform corrosion of Al–0.5Zn–0.03In–1Mg–0.05Ti alloys, Al–5Zn–0.03In–1Mg–0.05Ti–xLa (x = 0.3, 0.5 and 0.7 wt.%) alloys were developed. Microstructures and electrochemical properties of the alloys were investigated. The results show that the optimal microstructures and electrochemical properties are obtained in Al–5Zn–0.03In–1Mg–0.05Ti–0.5La alloy. The main precipitate phase is Al2LaZn2 particles. The excellent electrochemical properties of Al–5Zn–0.03In–1Mg–0.05Ti–0.5La alloy is mainly attributed to fine grains and grain boundaries containing fine Al2LaZn2 precipitates. At the same time the fine grains can improve the non-uniform corrosion of Al–0.5Zn–0.03In–1Mg–0.05Ti alloy.  相似文献   

6.
Wear and corrosion behaviour of cold-rolled Ti–13Nb–13Zr alloy, with martensitic microstructure, and Ti–6Al–4V ELI alloy, in martensitic and two-phase (α + β) microstructural conditions, was studied in a Ringer’s solution. The wear experiments were performed at room temperature with a normal load of 40 N and sliding speeds 0.26, 0.5 and 1.0 m/s. The corrosion behaviour was studied at 37 °C using open circuit potential-time measurements and potentiodynamic polarization. It was found that Ti–13Nb–13Zr alloy has a substantially lower wear resistance than Ti–6Al–4V ELI alloy in both microstructural conditions. Surface damage extent increases with sliding speed increase and is always smallest for martensitic Ti–6Al–4V ELI alloy with highest hardness. Both alloys exhibit spontaneous passivity in Ringer’s solution. Corrosion potential values are similar for all three materials. However, Ti–13Nb–13Zr and martensitic Ti–6Al–4V ELI alloys show improved corrosion resistance comparatively to Ti–6Al–4V ELI alloy with (α + β) microstructure. Martensitic Ti–6Al–4V ELI alloy possesses the best combination of both corrosion and wear resistance, although its corrosion resistance is found to be slightly higher than that of the Ti–13Nb–13Zr alloy.  相似文献   

7.
This work studied the electrochemical behavior of a solution treated or 550 °C aged Cu10Ni–3Al–1.3Fe alloy, in 0.01 M NaCl aqueous solution, through potentiodynamic polarization in both stagnant condition or under erosion process. Results showed the occurrence of a passivity break potential (Epb), related to the beginning of the denickelification process, which occurred as a localized attack under stagnant electrolyte. Under erosion conditions localized denickelification was not observed, despite of the presence of Epb. This could indicate that selective corrosion of Ni, which caused the observed Epb, occurred as a dissolution–redeposition process, with removal of the Cu deposits during erosion process.  相似文献   

8.
The corrosion behaviour of two Mg–9Al–Ho alloys (Mg–9Al–0.24Ho and Mg–9Al–0.44Ho) was evaluated by general corrosion measurements and electrochemical methods in 3.5% NaCl solution saturated with Mg(OH)2. The experimental results were compared with that of Mg–9Al alloy without Ho addition. Various corrosion rate tests showed that the addition of Ho obviously enhanced corrosion resistance of Mg–9Al alloy. The microstructure of the three magnesium alloys and the morphology of their corrosion product film were examined by Electron Probe Microanalysis (EPMA) and Energy Dispersion Spectroscopy (EDS). The alloys with Ho addition showed a microstructure characterized by α phase solid solution, which was surrounded by some β phase and grain-like Ho-containing phase. The improvement of corrosion resistance of the Mg–9Al–Ho alloys could be explained by the fact that the deposited Ho-containing phases were less cathodic. Moreover, the corrosion product films on the Ho-containing alloy surface demonstrated their ability to restrain further corrosion.  相似文献   

9.
The corrosion mechanisms of Al–Cr–Fe and Al–Cu–Fe–Cr complex metallic alloys have been investigated by potentiodynamic and potentiostatic polarization. Very good passivation of the Al–Cr–Fe surface is exhibited from 1 M H2SO4 to 1 M NaOH solutions, which was confirmed by ICP-OES analysis over a period of 273 days. Potentiostatically formed passive films analysed by XPS revealed chromium enrichment in the outermost layer of the aluminium oxy-hydroxide film. Although Al–Cu–Fe–Cr showed passivation during potentiodynamic polarization, heavy active corrosion at OCP was revealed by ICP-OES. For the Al–Cu–Fe–Cr alloy, the 10% content of Cr is insufficient to maintain a protective “chemically stable” Cr oxide/hydroxide.  相似文献   

10.
The anodizing behaviour of constituent particles (Al–Fe–Mn–Cu) and dispersoids (Al–Cu–Mn–Li and β′(Al3Zr)) in AA2099-T8 has been investigated. Low-copper-containing Al–Fe–Mn–Cu particles anodized more slowly than the alloy matrix, forming a highly porous anodic oxide film. Medium- and high-copper-containing Al–Fe–Mn–Cu particles were rapidly dissolved, resulting in defects in the anodic film. The anodizing of Al–Cu–Mn–Li dispersoids is slightly slower than the alloy matrix, forming a less regular anodic oxide film. β′(Al3Zr) dispersoids anodized at a similar rate to the alloy matrix. Further, the potential impact of the discontinuities in the resultant anodic films on the performance of the filmed alloy is discussed.  相似文献   

11.
The corrosion behavior of an Al–0.63Mg–0.28Si alloy under droplets of MgCl2 solution in environments of 75% and 33% RH was studied using a Kelvin Probe. The equilibrium chloride concentrations in these two environments are 5.8 and 9.8 M chloride, respectively. In the 33% RH environment, metastable pitting was the main form of corrosion. In some cases at 75% RH, the potential baseline decreased slowly by hundreds of millivolts and remained at the lower value. These samples exhibited filiform-like corrosion inside micro-droplets that formed outside of the main MgCl2 drop. A model for the filiform-like attack in a micro-droplet is presented.  相似文献   

12.
Lanthanum-based conversion coating on Mg–Li alloy has been prepared by a microwave-assisted method. X-ray diffractions (XRD) indicate that the intermetallic compounds of lanthanum are formed on Mg–Li alloy surface. Scanning electron microscopy (SEM) images show that the coating has different morphologies and special structures. The corrosion resistance was assessed by means of potentiodynamic polarization curves and electrochemical impedance spectra (EIS). The results indicate that this coating significantly reduces the corrosion rate of Mg–Li alloy in NaCl solution. A comparing experiment indicates that the coating prepared by microwave-assisted process has superior corrosion resistance to the coating obtained at room temperature.  相似文献   

13.
Heming Wang  Robert Akid   《Corrosion Science》2007,49(12):4491-4503
The inherent reactivity of the Al–Cu alloys is such that their use for structural, marine, and aerospace components and structures would not be possible without prior application of a corrosion protection system. Historically these corrosion protection systems have been based upon the use of chemicals containing Cr(VI) compounds. Organic–inorganic hybrid silane coatings are of increasing interest in industry due to their potential application for the replacement of current toxic hexavalent chromate based treatments. In the present study, a hybrid epoxy–silica–alumina coating with or without doped cerium nitrate has been prepared using a sol–gel method. The hybrid coatings were applied by a dip-technique to an Al–Cu alloy, Al 2024-T3, and subsequently cured at room temperature. The anticorrosion properties of the coatings within 3.5% NaCl were studied using electrochemical impedance spectroscopy (EIS), and conventional DC polarisation. An exfoliation test method involving immersion in a solution of 4 M NaCl, 0.5 M KNO3 and 0.1 M HNO3 was also used. The cerium nitrate doped sol–gel coating exhibited excellent anticorrosion properties providing an adherent protection film on the Al 2024-T3 substrate. The resistance to corrosion of the sol–gel coating was also evaluated by analysing the morphology of the coating before and after corrosion testing using scanning electron microscopy.  相似文献   

14.
Amorphous hydrogenated silicon-based multilayer coatings were deposited on 301 stainless steel (SS301) and Ti–6Al–4V alloy substrates using plasma enhanced chemical vapor deposition (PECVD), in order to integrate the advantages of the respective layers. Corrosion and tribo-corrosion behaviors of the complete coating/substrate system on different substrates were investigated. The SiN/SiC double-layer coating substantially improved the corrosion resistance of the metals: For SS301, the corrosion current, icorr, was reduced by more than three orders of magnitude, and the breakdown voltage was increased from 0.34 to 1.37 V. For Ti–6Al–4V, the icorr was decreased by a factor of ~ 50. Particularly, the Ti–6Al–4V/SiN/SiC multilayer system exhibited excellent anti-corrosion properties according to potentiodynamic polarization measurements, due to the superior corrosion resistance of both the Ti–6Al–4V substrate and the silicon-based coatings. Further enhancement of the tribo-corrosion resistance has been achieved by applying an amorphous hydrogenated carbon (a-C) coating as a top layer in the three-layer system. In the tribo-corrosion test in 1 wt.% NaCl solution, the SiN/SiC/a-C coating reduced the wear rate and the friction coefficient by a factor of ~ 175 and ~ 4, respectively, compared with the bare Ti–6Al–4V. The Ti–6Al–4V/SiN/SiC/a-C multilayer system integrates in synergy the advantages of the respective layers, and its versatility makes it a particularly attractive candidate for applications in different harsh working environments.  相似文献   

15.
The corrosion behaviour of AISI 316L, wrought Co–28Cr–6Mo and Ti–6Al–4V was studied in aerated solutions of phosphate buffered saline (PBS) at various concentrations of bovine serum albumin (BSA) at 37 °C. Open circuit potential, potentiodynamic polarization, linear polarization resistance (LPR) and electrochemical impedance spectroscopy (EIS) experiments along with X-ray photoelectron spectroscopy (XPS) on Co–28Cr–6Mo oxide layer were conducted to study the interaction of BSA and passive layers and to measure the corrosion rates. Ti–6Al–4V alloy had the lowest corrosion rate and the highest breakdown potential. It was shown that BSA has enhanced the alloy passive film stability at higher concentrations.  相似文献   

16.
The influence of precipitates on the electrochemical performance of Al–Zn–In–Mg–Ti–Si sacrificial anode was investigated by the TEM observation and electrochemical measurements. The results indicate that the shape and size of precipitates in the alloys has great impact on the electrochemical performance. The anodes with rod-like precipitates are easily corroded along grain boundaries, resulting in the low current efficiency caused by serious grain loss. In comparison, the anodes with spherical or discal precipitates have high current efficiency and even corrosion morphology. The precipitates with a size of about 400 nm are conducive to improve the electrochemical performance of anodes.  相似文献   

17.
Growth of anodic oxide films on AC2A alloy in sulphuric acid solution   总被引:1,自引:0,他引:1  
Growth behaviour of anodic oxide films on AC2A Al cast alloy was investigated in sulphuric acid solution using SEM, optical microscope (OM) and confocal scanning laser microscope (CSLM) and energy dispersive spectroscopy (EDS). The AC2A alloy contains three different types of second-phase particles: Al–Cu, Al–Cu–Fe–Si and Al–Si particles. The growth of anodic oxide films was critically retarded by the presence of non-reactive particles of Al–Si, while little effect was observed by the presence of active particles of Al–Cu and Al–Cu–Fe–Si. The most severe retardation effect on the growth of anodic films on AC2A alloy resulted from agglomerated Al–Si particles.  相似文献   

18.
The present paper focuses on the study of SCC behaviour of a new Al–Cu–Li alloy. For this purpose, two conventional media – NaCl and NaCl + H2O2 – were used for comparison with commercial alloys 7075 and 8090. This new alloy shows lower susceptibility to SCC than conventional alloys as it does not undergo environmentally-induced embrittlement in NaCl solutions and in 1 M NaCl + 0.3% H2O2 in which the 7075 and 8090 alloys, respectively, undergo environmentally-induced fracture.Solution composition was modified in order to determine the environmental conditions and strain rates under which this new alloy will crack due to a stress corrosion cracking phenomenon. The addition of 0.6 M sulphates to 1 M NaCl + 0.3% H2O2 solution allows the definition of a range of strain rate (between 10−7 and 10−6 s−1) in which this new alloy undergoes stress corrosion cracking.  相似文献   

19.
Electrodeposition of Zn–Ni coatings performed in acidic baths are not suitable for high strength steels due to their high susceptibility to hydrogen embrittlement.In this work, Zn–Ni coatings were deposited on a high strength steel (4340) upon stirring conditions from an alkaline bath. A complete characterisation of the coatings (corrosion, morphology and composition) has been accomplished, correlating the electrodeposition conditions with these features. The best protective properties of the grown coatings were achieved for the alloys with a single phase structure of γ-Ni5Zn21 and a denser morphology. Additionally, the hydrogen content incorporated is lower than even cadmium-coated 4340 steel which has undergone a postbaking dehydrogenation treatment.  相似文献   

20.
The effect of magnesium hydride on the corrosion behavior of an as-cast AZ91 alloy in 3.5 wt.% NaCl solution was investigated using gas collection method and potentiostatic test. The Pourbaix diagram of Mg–H2O system was built using thermodynamic calculation. It was possible that magnesium hydride could form in the whole pH range in theory. The experimental results showed that at cathodic region, magnesium hydride formed on surface, which was the controlling process for the corrosion behavior of AZ91 alloy; at anodic region and free corrosion potential, magnesium hydride model and partially protective film model, monovalent magnesium ion model and particle undermining model were responsible for the corrosion process of AZ91 alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号