首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Nanotubular oxide layer formation was achieved on biomedical grade Ti-13Nb-13Zr alloy using anodization technique in 1 M H3PO4 + 0.5 wt.% NaF. The as-formed and heat treated nanotubes were characterized using SEM, XRD and TEM. Corrosion behaviour of the nanotubular alloy was investigated employing potentiodynamic and potentiostatic polarization. The alloy after nanotubular oxide layer formation exhibited significantly higher corrosion current density than the bare alloy. The lower corrosion resistance of the nanotubular alloy was suggested to be associated with the distinctly separated barrier oxide/concave shaped tube bottom interface. A heat treatment at 150 °C appreciably enhanced the corrosion resistance property.  相似文献   

2.
The corrosion performance of the slurry Si-modified aluminide coating on the nickel base superalloy In-738LC exposed to low temperature hot corrosion condition has been investigated in Na2SO4-20 wt.% NaCl melt at 750 °C by combined use of the anodic polarization and characterization techniques.The coated specimen showed a passive behavior up to −0.460 V vs. Ag/AgCl (0.1 mol fraction) reference electrode, followed by a rapid increase in anodic current due to localized attack in the higher potential region. In the passive region, the anodic dissolution of constituents of the coating occurred through the passive film, probably SiO2, at slow rate of 20-30 μA/cm2. The passive current for the Si-modified coating was two orders of magnitude smaller than that for bare In-738LC, which is known as Cr2O3 former in this melt. This indicates that the SiO2 film is chemically more stable than Cr2O3 film under this condition. However, pitting-like corrosion commenced around −0.460 V and proceeded at the high rate of 100 mA/cm2 in the higher potential region than +0.400 V. The corrosion products formed on the coating polarized in different anodic potentials were characterized by SEM, EDS and XRD. It was found from the characterization that oxidation was dominant attack mode and no considerable sulfidation occurred at 750 °C. The SiO2 oxide was not characterized in the passive region because the thickness of the passive film was extremely thin, but was detected as the primary oxide in the localized corrosion region, where the selective oxidation of Al was observed by further progress of the corrosion attack front into the inner layer of coating.  相似文献   

3.
M. Nakajima 《Corrosion Science》2009,51(7):1534-4740
Spark anodizing of titanium, Ti-6Al-4V and Ti-15V-3Al-3Cr-3Sn in alkaline aluminate electrolyte produces highly crystalline anodic films consisting mainly of Al2TiO5 with α- and γ-Al2O3 as minor oxide phases, irrespective of substrate composition. However, the apparent efficiency for film formation decreases in the following order: Ti-6Al-4V, titanium and Ti-15V-3Al-3Cr-3Sn. A large amount of aluminium species are incorporated from the electrolyte, probably by plasma-chemical reaction, and become distributed throughout the film thickness. This distribution indicates that the electrolyte penetrates near to the film/substrate interface through the discharge channels. Thus, the outwardly migrating aluminium ions under a high electric field can be present even in the inner part of the anodic films. Voids are developed at the film/substrate interface, particularly on the vanadium-containing alloys, reducing the adhesion of the anodic film to the substrate.  相似文献   

4.
A layer containing dicalcium phosphate dihydrate (DCPD) and β-Ca3(PO4)2 was prepared on magnesium alloy by hydrothermal treatment of micro-arc oxide (MAO) layer. The biocorrosion resistance of the oxide layers before and after hydrothermal treatment was analyzed by anodic polarization and electrochemical impedance spectroscopy (EIS) in Hank’s solution. The prepared MAO layers consisted mainly of MgO and MgAl2O4, and Ca and P inside the oxide layers existed with amorphous phase. Hydrothermal treatments not only made the amorphous Ca and P change into DCPD and β-Ca3(PO4)2 crystals, but also improved the biocorrosion resistance of magnesium alloys, especially the pitting corrosion resistance.  相似文献   

5.
In this study, the surface characteristic of oxide films on Ti-6Al-4V alloy formed by an anodic oxidation treatment in H2SO4/H3PO4 electrolyte at potentials higher than the breakdown voltage was evaluated. Morphology of the surface layers was studied by scanning electron microscope. The results indicated that the diameter of pores and porosity of oxide layer increase by increasing the anodizing voltage. The thickness measurement of the oxide layers showed a linear increase of thickness with increasing the anodizing voltage. The EDS analysis of oxide films formed in H2SO4/H3PO4 at potentials higher than breakdown voltage demonstrated precipitation of sulfur and phosphor elements from electrolyte into the oxide layer. X-ray diffraction was employed to exhibit the effect of anodizing voltage on the oxide layer structure. Roughness measurements of oxide layer showed that in spark anodizing, the Ra and Rz parameters would increase by increasing the anodizing voltage. The structure and Corrosion properties of oxide layers were studied using electrochemical impedance spectroscopy (EIS) techniques, in 0.9 wt.% NaCl solution. The obtained EIS spectra and their interpretation in terms of an equivalent circuit with the circuit elements indicated that the detailed impedance behavior is affected by three regions of the interface: the space charge region, the inner compact layer, and outer porous layer.  相似文献   

6.
Highly ordered TiO2 nanotubes with 85 μm length were fabricated by the electrochemical method for 17 h at 60 V in an ethylene glycol/0.5 % NH4F/5 % water mixture solution. The nanotube arrangements and surface morphologies of the anodic titania films were clearly dependent on the electrolytes used in the fabrication process. The activation energy for the transformation from an amorphous to anatase structure was evaluated using differential scanning calorimetry (DSC) results and a Kissinger plot. The activation energy for anatase transformation on the anodic titania nanotubular film was estimated to be 208.9 kJ/mol.  相似文献   

7.
The anodizing behaviour of sputtering-deposited Al-Nb alloys, containing 21, 31 and 44 at.% niobium, has been examined in 0.1 M ammonium pentaborate electrolyte with interest in the composition and the dielectric properties of the anodic oxides. RBS and TEM revealed amorphous oxides, containing units of Nb2O5 and Al2O3 in proportion to the alloy composition. Xenon marker experiments indicated their growth through migration of the Nb5+, Al3+ and O2− species, with cation transport numbers, in the range 0.31-0.35, and formation ratios, in the range 1.35-1.64 nm V−1, intermediate between those of anodic alumina and anodic niobia. Al3+ ions migrate slightly faster than Nb5+ ions, promoting a thin alumina layer at the film surface, although this layer is penetrated by fingers of the underlying niobium-containing oxide of relatively reduced ionic resistivity. The incorporation of units of Nb2O5 into anodic alumina increases the dielectric constant from about 9 to the range 11-22 for the investigated alloys.  相似文献   

8.
Corrosion of a synthetic Cu-13Sn alloy with a dendritic structure was investigated in a low aggressive medium (0.01 M Na2SO4 aqueous solution). The corrosion rate was accelerated through anodic polarization of the alloy in a potential range close to the open-circuit potential. The composition of the corrosion layer was followed as a function of the polarization time, using scanning electron microscopy and energy dispersive spectrometry methods. The results clearly showed that bronze corrosion in these experimental conditions proceeds by decuprification. Selective copper dissolution leads to corrosion layers enriched in tin compounds. It was concluded that bronze is partially passivated through the presence of a tin oxide layer, which slows down copper dissolution rate, compared to pure copper.  相似文献   

9.
The cathodic behaviour of oxides formed on titanium electrodes in physiological solutions at potentials between 3 and 5 V (vs. SCE) was studied by cyclic voltammetry. In case of anodic polarization at potentials higher than 3 V (vs. SCE), a cathodic peak at ∼0.4 V (vs. SCE) appears in the cathodic scan, which could be due to the reduction of unstable peroxides. The results show that this peak depends on the anodic potential and the oxidation time. This behaviour supposedly is due to the formation of unstable titanium peroxides like TiO3 during anodization. Based on repetitive oxidation-reduction processes can be concluded that the created amount of TiO3 inside of the TiO2 surface layer seems to be constant.  相似文献   

10.
The method of multicycle chronoammetry of RRDE makes it possible to obtain separately the partial currents of metal electrode ionization, anodic oxide formation and chemical oxide dissolution. The method is tested for Ag∣Ag2O∣OH(H2O) system. In the range of low anodic potentials (0.48 ÷ 0.51 V) the process of active silver dissolution prevails; the phase formation current rapidly drops. At higher potentials (0.52 ÷ 0.53 V) the phase formation current prevails and noticeably exceeds the rate of the chemical oxide dissolution. The thickness of Ag2O film rapidly increases; and the net phase formation current is close to 100%.  相似文献   

11.
The growth of a nanoporous anodic oxide on titanium and a Ti-20 at.% W alloy, both deposited by magnetron sputtering, in a glycerol/phosphate electrolyte at 453 K is reported. The oxide formed on titanium is a mixture of amorphous titania and anatase. However, that on the alloy is amorphous only and forms at increased efficiency, about 27%. The amorphous structure is considered to be stabilized by incorporated units of WO3, which are distributed uniformly throughout the anodic film. The growth of the porous oxides is suggested to be associated with loss of film species at the film/electrolyte interface at the base of pores, with new oxide forming exclusively at the metal/film interface by inward migration of O2− ions.  相似文献   

12.
The kinetics of anodic dissolution of silver and Ag–Au alloys (XAu = 0.1–30 at.% Au) in aqueous alkaline solution under the conditions of the formation of silver oxides has been examined. The techniques of cyclic voltammetry, chronoammetry, and photopotential measurements have been used. It was established that the anodic formation and cathodic reduction of Ag2O on silver and alloys are controlled by migration in the oxide layer. Ag2O oxide is an n-type semiconductor with an excess of silver atoms. Oxide layers formed on monocrystalline Ag(1 1 1) and Ag(1 1 0) are more stoichiometric than the layer formed on polycrystalline Ag.  相似文献   

13.
Oxidation behavior of molten magnesium in atmospheres containing SO2   总被引:1,自引:0,他引:1  
The microchemistry and morphology of the oxide layer formed on molten magnesium in atmospheres containing SO2 were examined. Based on the results and the thermodynamic and kinetic calculations of oxide-growth process, a schematic oxidation mechanism is presented. The results showed that the oxide scales with network structure were generally composed of MgO, MgS, and MgSO4 with different layers, depending on the SO2 content, the time and the temperature. The formation of MgSO4 was important for the formation of the protective oxide scales. The growth of the oxide scales followed the parabolic law at 973 K and was controlled by diffusion.  相似文献   

14.
Nickel passive film has been studied in acidic sulfate solutions at pH 2.3 and 3.3 by ellipsometry. During anodic passivation followed by cathodic reduction, the roughness increases with dissolution of nickel, being indicated by gradual decrease of reflectance. However, the ellipsometric parameters, Ψ (arctan of relative amplitude ratio) and Δ (relative retardation of phase), are relatively insensitive to the roughness increase. From the change of Ψ and Δ, δΨ and δΔ, during the anodic passivation and reduction, thickness of the passive oxide film was estimated with assumption of refractive index of nf = 2.3 of the film. The thickness estimated is a range between 1.4 and 1.7 nm in the passive potential region from 0.8 to 1.4 V vs. RHE, having a tendency of thickening with increase of potential. Cathodic reduction at constant potential induces a change of the oxide film to an oxide film with lower refractive index of nf = 1.7, accompanied by thickening of the film about 30% more in the initial stage of reduction for 30 s. The gradual decrease of thickness takes place for the oxide with the lower refractive index in the latter stage. The potential change from the passive region to cathodic hydrogen evolution region may initially cause hydration of the passive oxide of NiO, i.e., NiO + H2O = Ni(OH)2, and during the latter stage of reduction, the hydrated nickel oxide gradually dissolves.  相似文献   

15.
The electrochemical behaviour of cold-rolled low carbon steel was studied on both active and passive potential regions in borate buffer solutions with and without the addition of sodium citrate (NaCit). In the active region anodic charges increased significantly and RCT values decreased with citrate, due to the formation of soluble complexes. In the passive potential region the film formed at +0.4 V in borate buffer solution with and without 0.010 M NaCit is probably enriched by Fe3O4 oxide, while films formed at +0.8 V are probably enriched by γ-Fe2O3. The equivalent circuit [Rs(RCTQ)] fitted all experimental impedance data.  相似文献   

16.
The effects of electrolyte pH and temperature on the structure and properties of anodic oxide films formed on niobium in phosphoric acid solution with the addition of NH4OH for pH adjustment have been investigated. The film thickness formed at the same voltage slightly increased with increasing pH and significantly increased with increasing electrolyte temperature. The capacitance of the film was independent of electrolyte pH in an acid region, while it notably increased with increasing pH in an alkaline region. The relative permittivity of the film changed 43.7-80.5 when the electrolyte pH was increased from 1.6 to 10. The incorporation depth and content of phosphorus in the film were markedly suppressed at pH 10, and nitrogen was found to penetrate into a depth of 70%. Furthermore, the apparent transport number of Nb5+ ion decreased from 0.26 to 0.02 by a pH increase from 1.6 to 10. The notable changes in structure and dielectric properties of the anodic niobia film formed in the alkaline region would primarily be caused by the different incorporation behavior of electrolyte species such as phosphorous and nitrogen.  相似文献   

17.
A.A. Hermas 《Corrosion Science》2008,50(9):2498-2505
Improvement of the passivation behavior of Type 304 austenitic stainless steel (SS) by coating with conductive polymers (CPs), like polyaniline (PANI) and poly(o-phenylenediamine) (PoPD), followed by exposure in an acid solution has been demonstrated. The passive films formed on SSs (after peeling off the polymer layer) are compared with those formed during anodic polarization under the same exposure condition. The passive films beneath the CPs are thicker and less hydrated than those formed on uncoated stainless steel. The polymer layer enhances the enrichment of chromium and nickel in the entire passive oxide, forming a more protective film than that formed during anodic polarization. The elemental distribution within the passive film is different in the two modes of passivation. The type of the polymer influences on the composition of the passive film. The best passivation is obtained by PoPD, with the passive film resulting in significant resistance of the SS to pitting corrosion in the 3% NaCl solution. The oxide film of this steel is characterized, in its inner and outer layers, by the highest ratio of Cr(OH)3/Cr2O3 and the lowest content of iron species.  相似文献   

18.
Corrosion behavior of Hastelloy C-276 in supercritical water   总被引:1,自引:0,他引:1  
The corrosion behavior of a nickel-based alloy Hastelloy C-276 exposed in supercritical water at 500–600 °C/25 MPa was investigated by means of gravimetry, scanning electron microscopy/energy dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. An oxide scale with dual-layer structure, mainly consisting of an outer NiO layer and an inner Cr2O3/NiCr2O4-mixed layer, developed on C-276 after 1000 h exposure. Higher temperature promoted oxidation, resulting in thicker oxide scale, larger weight gain and stronger tendency of oxide spallation. The oxide growth mechanism in SCW seems to be similar to that in high temperature water vapor, namely solid-state growth mechanism.  相似文献   

19.
Isothermal oxidation was carried out on new γ/γ′ Co-base superalloys of the system Co–Al–W–B. Appropriate B-contents lead to improved oxidation resistance and oxide layer adhesion. Oxidation at 800 and 900 °C results in formation of Co3O4, CoO, and complex oxides (containing Co, Al, and W). A continuous and protective inner alumina layer forms only at 800 °C. Furthermore, oxidation leads to phase transformation (γ/γ′ to γ/Co3W microstructure) at the matrix/oxide layer interface due to Al-depletion. The effect of additional alloying elements such as Ta, Cr, Nb, Si, V, Mo, and Ir on the oxidation behaviour was also investigated.  相似文献   

20.
The EIS technique was used to analyze the electrochemical reaction behavior of Alloy AZ91 in H3PO4/KOH buffered K2SO4 solution at pH 7. The corrosion resistance of Alloy AZ91 was directly related with the stability of Al2O3 · xH2O rich part of the composite oxide/hydroxide layer on the alloy surface. The break down of the oxide layer was estimated to occur mainly on the matrix solid solution phase in Alloy AZ91. The mf capacitive loop arose from the relaxation of mass transport in the solid oxide phase in the presence of Al2O3 · xH2O rich part and from Mg+ ion concentration within the broken area in the absence of Al2O3 · xH2O rich part in the composite oxide structure on the alloy surface. The lf inductive loop had tendency of disappear when the dissolution rate of the alloy decreased as a result of the formation of the protective oxide layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号