首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work studies the corrosion under flowing conditions of four kinds of AISI 316L materials welded by the micro-plasma arc welding technique in different media: a basic (LiBr) and an acidic (H3PO4) solution by means of polarization measurements. Sensitization tests, galvanic corrosion evaluation, microstructural analyses and microhardness tests have been also carried out. Corrosion parameters revealed that, among the materials welded with backing gas, the alloy which presented better corrosion behaviour was the one welded without filler alloy. However, this kind of material could undergo several corrosion problems if a crack is formed or due to an inadequate joint penetration.  相似文献   

2.
The corrosion resistance of 1018 carbon steel, 304 and 316 type stainless steels in the LiBr (55 wt.%) + ethylene glycol + H2O mixture at 25, 50 and 80 °C has been studied using electrochemical techniques which included potentiodynamic polarization curves, electrochemical noise and electrochemical impedance spectroscopy techniques. Results showed that, at all tested temperature, the three steels exhibited an active-passive behavior. Carbon steel showed the highest corrosion rate, since both the passive and corrosion current density values were between two and four orders of magnitude higher than those found for both stainless steels. Similarly, the most active pitting potential values was for 1018 carbon steel. For 1018 carbon steel, the corrosion process was under a mixed diffusion and charge transfer at 25 °C, whereas at 50 and 80 °C a pure diffusion controlled process could be observed. For 316 type stainless steel, at 25 and 50 °C a species adsorption controlled process was observed, whereas at 80 °C a diffusion controlled mechanism was present. Additionally, at 25 °C, the three steels were more susceptible to uniform type of corrosion, whereas at 50 and 80 °C they were very susceptible to localized type of corrosion.  相似文献   

3.
The work addresses the influence of Mn and Mo additions on corrosion resistance of AISI 304 and 316 stainless steels in 30 wt.% H2SO4 at 25 and 50 °C. Corrosion mechanism was determined by gravimetric tests, DC polarization measurements and electrochemical impedance spectroscopy (EIS). The morphology and nature of the reaction products formed on the material surface were analysed by scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). Reduction of temperature from 50 to 25 °C drastically decreased the corrosion rate of AISI 304 and 316 stainless steels in sulphuric acid solution. Mn additions did not affect significantly the general corrosion resistance due to its low ability to form insoluble compounds in acid medium. Meanwhile, the formation of molybdenum insoluble oxides enhanced the corrosion performance.  相似文献   

4.
The effects of the micro-plasma arc welding technique on the microstructure and pitting corrosion of different zones of an AISI 316L stainless steel were studied using different microscopy and electrochemical techniques. Galvanodynamic measurements and laser scanning confocal microscope were used to evaluate the corrosion evolution in situ. Results show, in general, the worst corrosion behaviour for the heat affected zone. Furthermore, there is a relation between the effects of the micro-plasma arc welding process on the materials microstructure and their pitting corrosion resistance. The weld zone was always in the cathodic position of the possible galvanic pairs.  相似文献   

5.
文中通过极化曲线、交流阻抗、Mott-Schottky曲线、浸泡腐蚀试验等方法对316L奥氏体不锈钢TIG焊接头各区域在不同浓度H2S溶液中的耐蚀性能进行了研究.极化曲线及交流阻抗结果表明,随着溶液中H2S浓度的升高,焊接接头各区域的耐蚀性明显降低.另一方面对于相同浓度的H2S溶液,316L基体的耐蚀性最好,其次是热影响区,焊缝区的耐蚀性最差.Mott-Schottky曲线结果表明,焊接接头在H2S溶液中的表面钝化膜形成p-n结结构,掺杂浓度高达1022 cm-3,且掺杂浓度随H2S浓度升高而增大,致使钝化膜防护性能降低.  相似文献   

6.
Galvanic corrosion generated by the coupling between the austenitic stainless steel Alloy 926 (UNS N08926) and the welded Alloy 926 has been studied by means of electrochemical methods. The materials have been tested in highly concentrated LiBr solutions at different temperatures. The effect of Li2CrO4 as corrosion inhibitor has also been evaluated. Galvanic corrosion has been studied under open circuit conditions using a zero-resistance ammeter (ZRA). Results have demonstrated the poor severity of the coupling between the Alloy 926 and the welded metal in the studied conditions. The probability of localized corrosion increased with temperature and concentration, as the galvanic current density and galvanic potential data demonstrated.  相似文献   

7.
The effect of microplasma arc welding (MPAW) on the electrochemical and corrosion behaviour of AISI 316L stainless steel tubes has been studied. Scanning electrochemical measurements were performed in sodium chloride to evaluate the difference in the electrochemical activity of base (non-welded) and welded samples. Oxygen reduction rates increase in AISI 316L due to the heat treatment effect induced by welding, indicating a higher electrochemical activity in the welded samples. Additionally, the use of MPA weldments in lithium bromide (LiBr) absorption machines was also analysed at typical operating temperatures and Reynolds numbers. The welding process increases corrosion rates, hinders passivation and increases the susceptibility to pitting attack in LiBr. However, zero-resistance ammeter and localization index measurements show that the galvanic pair generated between the base and welded alloys is weak, both electrodes being in their passive state. Temperature greatly affects the corrosion process.  相似文献   

8.
The corrosion behaviour of copper and AISI 304 stainless steel and the galvanic corrosion generated by the copper/AISI 304 pair, have been studied by electrochemical methods. These materials have been tested in an 850 g/L LiBr solution at different temperatures (25-75 °C) and at different Reynolds numbers (1456-5066) in order to study their performance in absorption machines. Results show that copper was always the anodic element of the pair and its corrosion resistance decreases due to the AISI 304 stainless steel galvanic effect. Galvanic corrosion increases with temperature and Reynolds number. However, it was proved that the effect of temperature on galvanic corrosion is more influential than the Reynolds number effect. This fact is also certain for corrosion of uncoupled copper and for corrosion of AISI 304 stainless steel. Experimental values of the corrosion current densities fit well the Arrhenius plot at all the Reynolds numbers analysed and a potential relation between the corrosion current densities and the Reynolds number has been found.  相似文献   

9.
C.X Li  T Bell 《Corrosion Science》2004,46(6):1527-1547
AISI 316 austenitic stainless steel has been plasma nitrided using the active screen plasma nitriding (ASPN) technique. Corrosion properties of the untreated and AS plasma nitrided 316 steel have been evaluated using various techniques, including qualitative evaluation after etching in 50%HCl + 25%HNO3 + 25%H2O, weight loss measurement after immersion in 10% HCl, and anodic polarisation tests in 3.5% NaCl solution. The results showed that the untreated 316 stainless steel suffered severe localised pitting and crevice corrosion under the testing conditions. AS plasma nitriding at low temperature (420 °C) produced a single phase nitrided layer of nitrogen expanded austenite (S-phase), which considerably improved the corrosion properties of the 316 austenitic stainless steel. In contrast, AS plasma nitriding at a high temperature (500 °C) resulted in chromium nitride precipitation so that the bulk of the nitrided case had very poor corrosion resistance. However, a thin deposition layer on top of the nitrided case, which seems to be unique to AS plasma nitriding, could have alleviated the corrosion attack of the higher temperature nitrided 316 steel.  相似文献   

10.
Glow-discharge nitriding treatments can modify the hardness and the corrosion resistance properties of austenitic stainless steels. The modified layer characteristics mainly depend on the treatment temperature. In the present paper the results relative to glow-discharge nitriding treatments carried out on AISI 316L austenitic stainless steel samples at temperatures ranging from 673 to 773 K are reported. Treated and untreated samples were characterized by means of microstructural and morphological analysis, surface microhardness measurements and corrosion tests in NaCl solutions. The electrochemical characterization was carried out by means of linear polarizations, free corrosion potential-time curves and prolonged crevice corrosion tests. Nitriding treatments performed at higher temperatures (>723 K) can largely increase the surface hardness of AISI 316L stainless steel samples, but decrease the corrosion resistance properties due to the CrN precipitation. Nevertheless nitriding treatments performed at lower temperatures (?723 K) avoid a large CrN precipitation and allow to produce modified layers essentially composed by a nitrogen super-saturated austenitic metastable phase (S-phase) that shows high hardness and very high pitting and crevice corrosion resistance; at the same polarization potentials the anodic current density values are reduced up to three orders of magnitude in comparison with untreated samples and no crevice corrosion event can be detected after 60 days of immersion in 10% NaCl solution at 328 K.  相似文献   

11.
The present study concerns a duplex surface treatment of AISI 316L stainless steel to enhance the erosion-corrosion resistance. The duplex surface treatment consisted of Ni/nano-SiC and Ni/nano-SiO2 predeposited by brush plating and a subsequent surface alloying with Ni-Cr-Mo-Cu by double glow process of the substrate. Results showed that under alloying temperature (1000 °C) condition, the amorphous nano-SiO2 particles still kept the amorphous structure, whereas the nano-SiC particles had been completely decomposed and Ni, Cr reacted with SiC to form Cr6.5Ni2.5Si and Cr23C6. The electrochemical corrosion behaviors of composite alloying layers compared with the single alloying layer and 316L stainless steel were measured under a range of hydrodynamic conditions by recording the current response, open circuit potential, potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS). Results showed that the increase of the impact velocity had significant influence on the current density of composite alloying layer with brush plating Ni/nano-SiC particles interlayer obtained under flowing condition at a potential of 200 mV, whereas there were only small fluctuations occurred at current response of composite alloying layer with brush plating Ni/nano-SiO2 particles interlayer. The results of potentiodynamic polarization indicated that, with increasing impact velocity under slurry flow conditions, the corrosion potentials of test materials decreased and the corrosion current densities of test materials increased. The corrosion resistance of composite alloying layer with brush plating Ni/nano-SiO2 particles interlayer was prominently superior to that of single alloying layer under slurry flow conditions; the corrosion resistance of composite alloying layer with brush plating Ni/nano-SiC particles interlayer was evidently lower than that of single alloying layer, but higher than that of 316L stainless steel under slurry flow conditions. The results of EIS indicated that, with respect to the Rtot obtained in sand-free flow, the impacts of sand particles dramatically decreased the Rtot values of composite alloying layer with brush plating Ni/nano-SiC particles interlayer, single alloying layer and 316L stainless steel, whereas the impact action slightly decreased that of composite alloying layer with brush plating Ni/nano-SiO2 particles interlayer. The weight loss rate studies suggested that the highly dispersive nano-SiO2 particles were helpful to improve the erosion-corrosion resistance of composite alloying layer, whereas the carbides and silicide phase were deleterious to that of composite alloying layer due to the fact that preferential removal of matrix around the precipitated phase takes place by the chemical attack of aggressive medium.  相似文献   

12.
Pitting corrosion resistance and galvanic behaviour of Alloy 31, a highly alloyed austenitic stainless steel (UNS N08031), and its weldment were studied in a heavy brine LiBr solution 1080 g/l at different temperatures (75–150 °C) using electrochemical techniques. The Mixed Potential Theory was used to evaluate the galvanic corrosion between the base and welded metals. Cyclic potentiodynamic curves indicate that high temperatures make passivation and repassivation of pits difficult, because the whole passivation range and the repassivation potential values decrease with temperature. The critical pitting transition occurs between 100 and 125 °C.  相似文献   

13.
This paper addresses the influence of Cu and Sn addition on the corrosion resistance of AISI 304 and 316 stainless steels in 30 wt% H2SO4 at 25 and 50 °C. The corrosion process was evaluated by gravimetric tests, DC measurements and electrochemical impedance spectroscopy (EIS). The corrosion products were analysed by SEM, X-ray mapping and XPS before and after accelerated tests. The behaviour of both AISI 304 and 316 stainless steels in sulphuric acid solution was greatly improved by increasing Cu concentration and the synergic effect of Cu and Sn. Addition of Sn increased corrosion resistance, but less than addition of copper.  相似文献   

14.
The potentiodynamic polarization curves in 0.5 M NaCl solution before and after crystallization of Fe73.5Cu1Nb3Si15.5B7 alloy have been studied in relation to the microstructure and alloy composition. It was shown that the corrosion resistance of the alloy strongly depending on these two factors. The observed decrease in corrosion resistance of the alloy after the heat treatment up to 480 °C in comparison to the corrosion resistance of the alloy in the as prepared state is attributed to the increased inhomogeneity of the alloy that coincides with the first appearance of Fe3Si phase. Further heating (up to 600 °C) resulted in an increase in the number of Fe3Si nanocrystallites and the appearance of a FeCu4 phase. After annealing at 600 °C the lowest corrosion rate, 0.004 mm a−1, was observed. Annealing of the samples at higher temperatures (>600 °C) induced formation of six crystalline phases which proved detrimental to the corrosion resistance of the Fe73.5Cu1Nb3Si15.5B7 alloy. Solid corrosion products were identified on the surface of the samples after anodic polarization.  相似文献   

15.
Duplex stainless steels obtained through powder metallurgy (PM) technology from austenitic AISI 316L and ferritic AISI 430L powders were mixed on different amounts to obtain biphasic structures with austenite/ferrite ratio of 50/50, 65/35 and 85/15. Prepared mixes of powders have been compacted at 750 MPa and sintered in N2-H2 (95% and 5%) at 1250 °C for 1 h. Corrosion behaviour, using electrochemical techniques such as anodic polarization measurement, cyclic anodic polarization scan and electrochemical potentio-kinetic reactivation test and double loop electrochemical potentio-kinetic reactivation double loop test were evaluated. For duplex stainless steels, when austenite/ferrite ratio increases the corrosion potential shifts to more noble potential and passive current density decreases. The beneficial effect of annealing solution heat treatment on corrosion behaviour was established and was compared with corrosion behaviour of vacuum sintered duplex stainless steels. The results were correlated with the microstructural features.  相似文献   

16.
PM 304L and 316L stainless steel have been compacted at 400, 600 and 800 MPa and sintered in vacuum and in nitrogen-hydrogen atmosphere. Postsintered heat treatments (annealing solution and ageing at 375, 675 and 875 °C) have been applied. Pitting corrosion resistance has been studied using anodic polarization measurements and the ferric chloride test. Anodic polarization curves reveal that densities and atmospheres are relevant on anodic behaviour. Pitting resistance is higher for PM 316L and for higher densities and vacuum as sintered atmosphere. Ageing heat treatments at medium and high temperatures are detrimental to passivity although susceptibility to pitting corrosion barely changes. But heat treatments at 375 °C even show certain improvement in pitting corrosion resistance. The results were correlated to the presence of precipitates and mainly to the lamellar constituent which appears in some samples sintered in nitrogen-hydrogen atmosphere. The role of nitrogen on the samples sintered under nitrogen-hydrogen atmosphere and its relation to the microstructural features was described.  相似文献   

17.
The AISI 444 stainless steel (SS) has become an option to substitute the AISI 316L SS because of its low cost and satisfactory corrosion resistance. However, the use of AISI 444 alloy tubes in heat exchangers causes the welding of a dissimilar joint. The aim of this study was evaluate the corrosion resistance of the tube-to-tubesheet welded by a TIG process composed of AISI 316L and AISI 444. Preparation of samples was executed through replication of tube-to-tubesheet joints. In order to test the corrosion resistance of the welded joint, the following tests were applied: sensitisation, mass loss from room temperature up to 90 °C and electrochemical corrosion tests in 0.5 mol/L HCl and 0.5 mol/L H2SO4 electrolytes. The results have shown that the dissimilar joint suffers galvanic corrosion with increased degradation of the heat-affected zone of the AISI 444 tube. Nevertheless, the mechanisms of localised corrosion (pit and intergranular) were more active in the AISI 316L alloy. It is concluded that the dissimilar joint showed better corrosion resistance than the welded joint composed solely of AISI 316L at temperatures up to 70 °C, as the conditions observed in this work.  相似文献   

18.
The effects of applied torque on corrosion behaviour of 316L stainless steel with crevices were investigated using the cyclic potentiodynamic polarization method. Three kinds of crevices (316L-to-polytetrafluoroethylene, 316L-to-fluoroelastomeric and 316L-to-316L) were tested in artificial seawater at 50 °C. Corroded surface morphology was also investigated using scanning electron microscopy. Results indicate similar trends in crevice corrosion susceptibility with increasing applied torque. Among the three crevices, the 316L stainless steel specimen, coupled to the 316L stainless steel crevice former, is the most susceptible to crevice corrosion.  相似文献   

19.
The influence of low temperature plasma nitriding on the wear and corrosion resistance of AISI 420 martensitic stainless steel was investigated. Plasma nitriding experiments were carried out with DC-pulsed plasma in 25% N2 + 75% H2 atmosphere at 350 °C, 450 °C and 550 °C for 15 h. The composition, microstructure and hardness of the nitrided samples were examined. The wear resistances of plasma nitrided samples were determined with a ball-on-disc wear tester. The corrosion behaviors of plasma nitrided AISI420 stainless steel were evaluated using anodic polarization tests and salt fog spray tests in the simulated industrial environment.The results show that plasma nitriding produces a relatively thick nitrided layer consisting of a compound layer and an adjacent nitrogen diffusion layer on the AISI 420 stainless steel surface. Plasma nitriding not only increases the surface hardness but also improves the wear resistance of the martensitic stainless steel. Furthermore, the anti-wear property of the steel nitrided at 350 °C is much more excellent than that at 550 °C. In addition, the corrosion resistance of AISI420 martensitic stainless steel is considerably improved by 350 °C low temperature plasma nitriding. The improved corrosion resistance is considered to be related to the combined effect of the solid solution of Cr and the high chemical stable phases of ?-Fe3N and αN formed on the martensitic stainless steel surface during 350 °C low temperature plasma nitriding. However, plasma nitriding carried out at 450 °C or 550 °C reduces the corrosion resistance of samples, because of the formation of CrN and leading to the depletion of Cr in the solid solution phase of the nitrided layer.  相似文献   

20.
The influence of Cu and Sn on the pitting corrosion resistance of AISI 304 and 316 stainless steels in chloride-containing media has been investigated. The corrosion behaviour was evaluated by cyclic polarization, potentiostatic CPT measurements and electrochemical impedance spectroscopy in 3.5 wt% NaCl. The corrosion resistance was also studied in FeCl3 under Standard ASTM G-48. According to the results, Cu addition favours pit nucleation but inhibits its growth, whereas Sn exerts the opposite effect, favouring pit growth and inhibiting its nucleation. Studies by SEM, X-ray mapping and EDS analysis showed Cu-, Cl- and O-rich corrosion products that reduce the extent of corrosion damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号