共查询到20条相似文献,搜索用时 46 毫秒
1.
针对传统聚类算法中只注重数据间的距离关系,而忽视数据全局性分布结构的问题,提出一种基于EK-medoids聚类和邻域距离的特征选择方法。首先,用稀疏重构的方法计算数据样本之间的有效距离,构建基于有效距离的相似性矩阵;然后,将相似性矩阵应用到K-medoids聚类算法中,获取新的聚类中心,进而提出EK-medoids聚类算法,可有效对原始数据集进行聚类;最后,根据划分结果所构成簇的邻域距离给出确定数据集中的属性重要度定义,应用启发式搜索方法设计一种EK-medoids聚类和邻域距离的特征选择算法,降低了聚类算法的时间复杂度。实验结果表明,该算法不仅有效地提高了聚类结果的精度,而且也可选择出分类精度较高的特征子集。 相似文献
2.
特征选择是数据挖掘和机器学习领域中一种常用的数据预处理技术。在无监督学习环境下,定义了一种特征平均相关度的度量方法,并在此基础上提出了一种基于特征聚类的特征选择方法 FSFC。该方法利用聚类算法在不同子空间中搜索簇群,使具有较强依赖关系(存在冗余性)的特征被划分到同一个簇群中,然后从每一个簇群中挑选具有代表性的子集共同构成特征子集,最终达到去除不相关特征和冗余特征的目的。在 UCI 数据集上的实验结果表明,FSFC 方法与几种经典的有监督特征选择方法具有相当的特征约减效果和分类性能。 相似文献
3.
一种基于聚类的文本特征选择方法 总被引:6,自引:0,他引:6
传统的文本特征选择方法存在一个共性,即通过某种评价函数分别计算单个特征对类别的区分能力,由于没有考虑特征间的关联性,这些方法选择的特征集往往存在着冗余。针对这一问题,提出了一种基于聚类的特征选择方法,先使用聚类的方法对特征间的冗余性进行裁减,然后使用信息增益的方法选取类别区分能力强的特征。实验结果表明,这种基于聚类的特征选择方法使得文本分类的正确性得到了有效的提高。 相似文献
4.
为降低特征空间维数,提出了一种基于分布距离的文本特征聚类方法,通过将特征空间中分布距离相近的特征聚合,来实现降维。在TanCorpusV1.0语料库上实验表明,当将特征空间维数降低至原空间的近10%时,用SVM作为分类器,获得了比特征提取方法高的分类精度。 相似文献
5.
K均值聚类,对于非凸、稀疏及模糊的非线性可分数据,其聚类效果不佳.针对此问题,通过引入粒计算理论,采用邻域粒化技术,提出一种邻域粒K均值聚类方法.样本在单特征上使用邻域粒化技术构造邻域粒子,在多特征上使用邻域粒化技术形成邻域粒向量;通过定义邻域粒与邻域粒向量的大小、度量和运算规则,提出两种邻域粒距离度量,并对所提出的邻域粒距离度量进行公理化证明.采用多个UCI数据集进行实验,将K均值聚类算法分别结合两种邻域粒距离度量,在邻域参数和距离度量两个方面与经典聚类算法进行比较,结果验证了所提出的邻域粒K均值聚类方法的可行性和有效性. 相似文献
6.
软件缺陷预测技术通过分析软件静态信息,对软件模块的缺陷倾向性做出判断,合理分配测试资源。但有时搜集的大量度量元信息是无关或冗余的,这些高维的特征增加了缺陷预测的复杂性。文章提出了一种新的度量元选择方法,首先通过样本聚类将相似度高的样本聚在同一簇中,然后在每个簇中按照最低冗余度进行特征子集的挑选,主要选择相互间冗余度低,且预测能力强的度量元。最后通过NASA数据集的实例证明本文方法能有效降低特征子集的冗余率,并能有效提高预测的准确度。 相似文献
7.
8.
多数传统的属性聚类算法不能直接处理连续型属性,为了避免连续数据离散化处理时造成的信息损失,降低样本属性邻域求解的复杂度,提高特征基因提取的效率。文中提出一种将邻域互信息用于属性聚类的特征基因选择方法,用于在海量的基因表达谱数据中挖掘出少量的具有分类识别能力且冗余度较小的特征基因。 相似文献
9.
针对多维数据集,为得到一个最优特征子集,提出一种基于特征聚类的封装式特征选择算法。在初始阶段,利用三支决策理论动态地将原始特征集划分为若干特征子空间,通过特征聚类算法对每个特征子空间内的特征进行聚类;从每个特征类簇里挑选代表特征,利用邻域互信息对剩余特征进行降序排序并依次迭代选择,使用封装器评估该特征是否应该被选择,可得到一个具有最低分类错误率的最优特征子集。在UCI数据集上的实验结果表明,相较于其它特征选择算法,该算法能有效地提高各数据集在libSVM、J48、Nave Bayes以及KNN分类器上的分类准确率。 相似文献
10.
多数传统的属性聚类算法不能直接处理连续型属性,为了避免连续数据离散化处理时造成的信息损失,降低样本属性邻域求解的复杂度,提高特征基因提取的效率。文中提出一种将邻域互信息用于属性聚类的特征基因选择方法,用于在海量的基因表达谱数据中挖掘出少量的具有分类识别能力且冗余度较小的特征基因。 相似文献
11.
针对特征空间中存在潜在相关特征的规律,分别利用谱聚类探索特征间的相关性及邻域互信息以寻求最大相关特征子集,提出联合谱聚类与邻域互信息的特征选择算法.首先利用邻域互信息移除与标记不相干的特征.然后采用谱聚类将特征进行分簇,使同一簇组中的特征强相关而不同簇组中的特征强相异.继而基于邻域互信息从每一特征簇组中选择与类标记强相关而与本组特征低冗余的特征子集.最后将所有选中特征子集组成最终的特征选择结果.在2个基分类器下的实验表明,文中算法能以较少的合理特征获得较高的分类性能. 相似文献
12.
在多标记学习中,数据降维是一项重要且具有挑战性的任务,而特征选择又是一种高效的数据降维技术。在邻域粗糙集理论的基础上提出一种多标记专属特征选择方法,该方法从理论上确保了所得到的专属特征与相应标记具有较强的相关性,进而改善了约简效果。首先,该方法运用粗糙集理论的约简算法来减少冗余属性,在保持分类能力不变的情况下获得标记的专属特征;然后,在邻域精确度和邻域粗糙度概念的基础上,重新定义了基于邻域粗糙集的依赖度与重要度的计算方法,探讨了该模型的相关性质;最后,构建了一种基于邻域粗糙集的多标记专属特征选择模型,实现了多标记分类任务的特征选择算法。在多个公开的数据集上进行仿真实验,结果表明了该算法是有效的。 相似文献
13.
近邻法对不相关特征的敏感性很高,利用邻域重构系数可以保持原有数据结构的优点,为此,文中提出基于邻域保持学习的无监督特征选择算法.首先根据数据样本和邻域的相似性构造相似矩阵,并引入中间矩阵构造低维空间.然后利用拉普拉斯乘子法选择有效特征子集.在4个公开数据集上的实验表明,文中算法可以有效识别代表性特征. 相似文献
14.
15.
基于遗传算法及聚类的基因表达数据特征选择 总被引:1,自引:0,他引:1
特征选择是模式识别及数据挖掘等领域的重要问题之一。针对高维数据对象(如基因表达数据)的特征选择,一方面可以提高分类及聚类的精度和效率,另一方面可以找出富含信息的特征子集,如发现与疾病密切相关的重要基因。针对此问题,本文提出了一种新的面向基因表达数据的特征选择方法,在特征子集搜索上采用遗传算法进行随机搜索,在特征子集评价上采用聚类算法及聚类错误率作为学习算法及评价指标。实验结果表明,该算法可有效地找出具有较好可分离性的特征子集,从而实现降维并提高聚类及分类精度。 相似文献
16.
针对近邻传播聚类算法不能处理混合属性数据集的问题,提出了一种新的距离度量测度,并将其应用到近邻传播聚类算法中,提出了一种基于维度属性距离的混合属性近邻传播聚类算法。与传统聚类算法不同的是,该算法不需要计算虚拟的中心点,同时考虑了数据集整体分布对聚类结果的影响。将算法在UCI数据库的2个混合属性数据集上进行验证,同时对比了经典的K-Prototypes算法以及K-Modes算法。实验结果表明,改进后的算法具有更好的聚类质量以及执行效率,算法的优越性得到了验证。 相似文献
17.
针对传统鲸鱼优化算法(WOA)不能有效处理连续型数据、邻域粗糙集对噪声数据的容错性较差等问题,文中提出基于自适应WOA和容错邻域粗糙集的特征选择算法.首先,为了避免WOA过早陷入局部最优,基于迭代周期构建分段式动态惯性权重,改进WOA的收缩包围和螺旋捕食行为,设计自适应WOA.然后,为了解决邻域粗糙集对噪声数据缺乏容错性的问题,引入邻域内相同决策特征所占的比例,定义容错邻域上下近似集、容错近似精度和近似粗糙度、容错依赖度及容错近似条件熵.最后,基于容错邻域粗糙集构造适应度函数,使用自适应WOA,不断迭代以获取最优子群.高维数据集上采用费雪评分算法进行初步降维,降低算法的时间复杂度.在8个低维UCI数据集和6个高维基因数据集上的实验表明,文中算法可有效选择特征个数较少且分类精度较高的特征子集. 相似文献
18.
介绍了一种新颖的基于高斯混合模型的特征选择算法,并且应用该方法的结果对模拟数据和真实数据进行聚类。实验结果表明,该算法可以有效地确定显著属性,提高聚类准确度。 相似文献
19.
讨论了变长模式识别中的特征选择问题。采用基于测地距离(Geodesic Distance)的非线性插值来进行特征选择.使得变长的模式映射为等长的模式,从而可以使用传统的等长模式的方法来解决变长模式识别问题。用非特定说话人的汉语孤立词识别来验证提出方法的性能,并采用支持向量机(Support Vector Machine,SVM)作为基本的分类方法。实验结果表明,提出的方法可以获得比传统方法诸如线性插值更好的性能,而计算量仅有很少增加。 相似文献
20.
邻域粗糙集模型中,随着信息粒尺寸的增长,基于多数投票原则的邻域分类器(NC)容易对未知样本的类别产生误判。为了缓解该问题,在协同表达分类(CRC)思想的基础上,提出了一种基于邻域协同表达的分类方法,即邻域协同分类器(NCC)。NCC首先借助邻域粗糙集模型对分类学习任务进行特征选择,然后找出被选特征下未知样本的邻域空间,最后在邻域空间内采用协同表达来代替多数投票原则,找出与未知样本具有最小重构误差的类别作为预测的类别标记。在4组UCI数据集上的实验结果表明:1)与NC相比,所提NCC在大尺寸信息粒下获得了较为满意的分类效果;2)与CRC相比,所提NCC在保持良好分类精度的同时,极大地降低了字典样本的规模,进而提高了分类的效率。 相似文献