首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
High-entropy alloys (HEAs) are a newly developed family of multi-component alloys. The potentiodynamic polarization and electrochemical impedance spectroscopy of the AlxCrFe1.5MnNi0.5 alloys, obtained in H2SO4 and NaCl solutions, clearly revealed that the corrosion resistance increases as the concentration of aluminium decreases. The AlxCrFe1.5MnNi0.5 alloys exhibited a wide passive region, which extended >1000 mV in acidic environments. The Nyquist plots of the Al-containing alloys had two capacitive loops, which represented the electrical double layer and the adsorptive layer. SEM micrographs revealed that the general and pitting corrosion susceptibility of the HEAs increased as the amount of aluminium in the alloy increased.  相似文献   

2.
    
With an increase in dissolved hydrogen (DH) content from 0 to 5 cm3 STP H2/kg H2O the electrochemical behaviour of Alloy 600 in deaerated PWR primary water at 290 °C was investigated, using corrosion potential (Ecorr) monitoring, potentiodynamic polarization, cyclic voltammetry and electrochemical impedance spectroscopy (EIS). DH content controls the Ecorr of Alloy 600. Raising DH content directly promotes the cathodic process and reduces the passivity of Alloy 600 significantly. EIS results show that increasing DH content results in a thinner inner-layer oxide film and ions diffusion becomes easier. The mechanism of these DH effects is discussed.  相似文献   

3.
The electrochemical behaviour of Ni-base alloys (Inconel 625, Inconel 718, G3 and Incoloy 825) is carried out at 80 °C in CO2/H2S corrosion environments using cyclic potentiodynamic polarisation and electrochemical impedance spectroscopy (EIS) techniques. The passivity mechanisms are analysed and discussed. In addition, some significant characterisation parameters such as Ecorr, Ipass, Epit, Epp, ΔE and Ipass in cyclic polarisation curves are analysed and compared to reveal the corrosion resistance of various Ni-base alloys. The equivalent circuit model and ZsimpWin software are utilised to discuss the Nyquist plots of various Ni-base alloys. The diffusion mechanism in EIS measurement is discussed. The result shows that the corrosion resistance of the Ni-base alloys to CO2 corrosion or CO2/H2S corrosion follows the sequence: Inconel 625 > G3 > Inconel 718 > Incoloy 825. H2S works as a cathodic depolariser with accelerating initiation of the corrosion process.  相似文献   

4.
This paper investigates the corrosion behaviour of type K thermoelements and their thin films, and compares the performance of chromel–alumel thin film thermocouple with its wire counterpart before and after exposure to 5% NaCl medium. Potentiodynamic polarisation tests reveal that chromel and alumel films are more “noble” than their respective wires. Alumel corrodes faster when coupled with chromel in films than as wires. Secondary electron micrographs and electrochemical impedance spectroscopy measurements suggest that chromel shows localised corrosion while alumel undergoes uniform corrosion. Corrosion adversely affects the thermocouple output and introduces an uncertainty in the measurement.  相似文献   

5.
Passivation and corrosion behaviour of the cobalt and cobalt-base alloy Co30Cr6Mo was studied in a simulated physiological solution containing chloride and bicarbonate ions and with pH of 6.8. The oxido-reduction processes included solid state transformations occurring at the cobalt/electrolyte interface are interpreted using theories of surface electrochemistry. The dissolution of cobalt is significantly suppressed by alloying it with chromium and molybdenum, since the alloy exhibited “chromium like” passivity. The structural and protective properties of passive oxide films formed spontaneously at the open circuit potential or during the anodic polarization were studied using electrochemical impedance spectroscopy in the wide frequency range.  相似文献   

6.
The corrosion susceptibility of alloy 33 in 0.5 mol/L sodium sulphate solutions containing or not 0.1 mol/L sodium chloride was tested at three different temperatures: 22 °C, 40 °C and 60 °C. Electrochemical studies were performed using corrosion potential measurements (Ecorr) as well as potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. Corrosion potential measurements showed that alloy 33 was passivated by a previously air formed film which was not destroyed during immersion in both solutions. No corrosion was observed during these tests although the temperature affected the film. Potentiodynamic polarization experiments showed that at high anodic potentials the previous film was broken up, and localized corrosion occurred in both solutions and at the three temperatures tested. Electrochemical impedance spectroscopy tests confirmed the presence of a stable passive film on the alloy surface at open circuit potential. Mott-Schottky analysis indicated that the passive film is an n-type semiconductor due to the presence of point defects of donor species, such as oxygen vacancies and interstitial metallic cations. As the potential increases the Cr(III) present in the barrier layer oxidizes producing Cr(VI) soluble species. The dissolution creates metallic cation vacancies that are acceptor species and the film changes from n-type to p-type semiconductor. The passive film rupture and the following localized attack are related to the drastic oxidative dissolution of the film at high anodic potentials, independent of its p-nature, chloride presence or increased temperature.  相似文献   

7.
X. Tang  Y.F. Cheng 《Corrosion Science》2011,53(9):2927-2933
Occurrence of stress corrosion cracking of pipelines under a near-neutral pH condition depends on the synergism of stress, hydrogen and anodic dissolution at the crack tip of the steel. In this work, micro-electrochemical techniques, including localized electrochemical impedance spectroscopy and scanning vibrating electrode technique, were used to characterize quantitatively the synergistic effects of hydrogen and stress on local dissolution at crack-tip of a X70 pipeline steel in a near-neutral pH solution. Results demonstrate that, upon hydrogen-charging, the anodic dissolution of the steel is enhanced. The resistance of the deposited corrosion product layer depends on the charging current density. There is a non-uniform dissolution rate on the cracked steel specimen, with a highest dissolution current density measured at crack-tip. For a smooth steel specimen, the synergistic effect factor of hydrogen and stress is equal to 5.4, and the total effect of hydrogen and stress on anodic dissolution of the steel is 7.7. In the presence of a crack, the hydrogen effect factor, stress effect factor and the synergistic effect factor are approximately 4.3, 1.3 and 4.0, respectively. The total effect factor is up to 22.4, which is very close to the 20 times of difference of crack growth rate in pipelines in the presence and absence of the hydrogen involvement recorded in the field.  相似文献   

8.
    
Corrosion behaviour of AZ80E alloy in comparison with pure Mg was investigated in phosphate buffer saline (PBS) solution in order to assess its bioactivity. Open circuit potential and EIS results reveal that both samples exhibit self-passivation with time. The higher corrosion resistance of the alloy is discussed from the perspective of its microstructure. Anodic oxidation for the alloy surface in borate buffer solution was also attempted potentiostatically to modify its corrosion behaviour. Anodised specimen at controlled potential of 1.0 V(SCE) can improve the durability of the alloy in PBS medium. The results were further confirmed by SEM and EDX analyses.  相似文献   

9.
The effect of sodium eperuate prepared from Wallaba (Eperua falcata Aubl) extract on zinc corrosion was investigated in alkaline solutions with chloride ions (i.e., simulated concrete pore solutions) by using electrochemical techniques. Sodium eperuate inhibits the corrosion of zinc in 0.1 M NaCl solutions with pH 9.6. As its concentration increases to 1 g/L, the inhibition efficiency reaches approximately 92%. In alkaline solutions with pH 12.6, sodium eperuate has no adverse effect on passivity of zinc, and retards the chloride attack. These suggest that sodium eperuate is an effective inhibitor for the protection of zinc in alkaline environments.  相似文献   

10.
The electrochemical corrosion behavior of a stressed, pre-cracked X70 pipeline steel was studied in a bicarbonate/carbonate solution by electrochemical and micro-electrochemical measurements, numerical calculation and surface analysis technique. The effects of stress and potential on passivity, corrosion and electrochemical behavior of the steel at crack-tip were mechanistically determined. It was found that the passive film formed at crack-tip was less stable than that formed in the region ahead of the crack. Moreover, the crack-tip is more susceptible to pitting corrosion than other region of the specimen. The applied stress enhances the anodic dissolution of the steel. In particular, the stress concentration at crack-tip further increases the local anodic dissolution rate. The enhancement of the anodic dissolution of the steel at crack-tip is also resulted from the formation of a galvanic couple, i.e., the crack-tip as an anode and the surrounding region as a cathode.  相似文献   

11.
  总被引:1,自引:0,他引:1  
Electrochemical and surface properties of passive films formed on Alloy 600 in a thiosulphate solution were studied. Oxide films formed at various passive potentials contained a bilayer oxide, whose composition changed as a function of the applied potential resulting in a change in the impedance behaviour. Destabilisation of the oxide film at potentials within the passive region was observed, which was due to the breakdown of the oxide film and coincided with the loss of Cr within the passive film. In contrast, a higher degree of corrosion protection was obtained when the Cr content within the oxide film was elevated.  相似文献   

12.
The corrosion and passivation behaviour of bulk polycrystalline martensite Ni50Mn30Ga20 and austenite Ni48Mn30Ga22 alloys was compared in electrolytes with different pH values. Linear anodic and cyclic potentiodynamic polarisation methods and anodic current transient measurements have been conducted for the alloys and their constituents to analyze free corrosion, anodic dissolution and passive layer formation processes. Electrochemically treated alloy surfaces were characterized with scanning electron microscopy (SEM) and angle-resolved x-ray photoelectron spectroscopy (XPS). The electrochemical response of both alloys is in principal similar and is dominated by the Ni oxidation. In acidic solutions (pH 0.5 and 5) a slightly higher reactivity is detectable for the martensitic alloy which is mainly attributed to enhanced dissolution processes at the multiple twin boundaries. In weakly acidic to strongly alkaline solutions (pH 5-11) both alloys exhibit a low corrosion rate and a stable anodic passivity. While air-formed films comprise NiOOH, Ga2O3 and MnO2, passive films formed in near neutral media (pH 5-8.4) are composed of Ni(OH)2, NiOOH and Ga2O3 in the outer region and of NiO, MnO2 and MnO in the metal-near region.  相似文献   

13.
The present study describes the effect of Pseudomonas aeruginosa on the corrosion rate of nickel–zinc and nickel–copper alloy coatings. The presence of bacteria was associated with decreases in Rct values, suggesting that P. aeruginosa promoted the corrosion of nickel–copper alloy coatings. However, Rct values of nickel–zinc coatings increased in response to bacterial inoculation, corresponding to a decrease in corrosion rate for nickel–zinc alloy coatings. Our results suggest that the activity of P. aeruginosa facilitated the corrosion of nickel–copper alloy, while serving a protective function for the nickel–zinc alloy.  相似文献   

14.
The electrochemical behavior of duplex stainless steel (DSS) in LiBr media was investigated by anodic cyclic polarization curves and AC impedance measurements. The effect of bromide concentration and the presence of chromate in the solutions on the corrosion behavior of AISI 2205 was studied. Cyclic polarization curve analyses showed that there was different pitting susceptibility of passive films depending on the LiBr concentration. Pitting potential decreases with LiBr concentration in a semilogarithmic scale following two different slopes. Chromate presence displaces pitting potentials towards more positive values at low LiBr concentrations but it has no effect when LiBr concentration increases.The comparative analysis carried out in LiBr and LiBr chromate-containing solutions at two different concentrations, 0.016 M and 0.032 M, verifies the assumption that halogen ions facilitate inhibitor adsorption. The addition of halides strongly increased the inhibition efficiency of chromate. The passive film becomes more resistant when bromide concentration increases, although film thickness decreases.  相似文献   

15.
The effects of rare earth metal (REM: Ce, La) and Ba addition on aqueous corrosion properties of super duplex stainless steels (SDSS) were investigated by electrochemical tests and surface analyses. The results of potentiodynamic test indicated that the passive range increased by the addition of Ce, La, and Ba, indicating increased relative resistance to localized corrosion. The EIS measurements showed that the Ce-La-Ba-bearing alloys exhibited higher Rct and Rp values than the Ce-La-Ba-free alloy at the passive and breakdown states. Furthermore, the additions of REMs and Ba together promoted the formation of dense chromium-enriched passive film.  相似文献   

16.
    
Continuous surface nanocrystallization (SNC) of rebar was achieved through wire-brushing process. A uniform NC layer with thickness of 25 μm and average grain size of 50 nm was formed on the rebar surface. Due to the enhanced passivation performance of the NC layer, corrosion resistance of the SNC rebar was significantly improved in Cl-containing saturated Ca(OH)2 solution. High-energetic crystal defects of the nano-grains leads to the faster passivation and enhanced stability of the passive film of the SNC rebar.  相似文献   

17.
The behaviour of E24 mild steel was studied by XPS analysis and electrochemical impedance spectroscopy (EIS) in a filtered solution of cement (pH 13), and an alkyl N-aminodiphosphonate aqueous solution called Aquadem® (7?pH?13). XPS results showed that the corrosion products developed in both media consisted of Fe2O3, covered by a very thin layer of goethite. The thickness of this oxide layer was estimated to be 3 nm. XPS analysis also demonstrated the adsorption of Aquadem® on the outer layer of FeOOH for pH lower than the zero charge pH of goethite (7.55). From XPS and EIS results, physical models of the E24 steel/electrolyte interface are proposed as a function of pH. For 11?pH?13, the steel is covered by a passive film, while for pH?10, pitting corrosion takes place. At pH 7, an additional mass transport phenomenon must be taken into account. The fitting procedure provided values for several physical parameters (electrolyte resistance, passive film resistance), from which the film capacitance and the dielectric constant of the oxide layer were calculated.  相似文献   

18.
In order to evaluate stress corrosion cracking (SCC) susceptibility of Zr-based bulk glassy alloys and develop the BGAs with low susceptibility to SCC, the SCC behaviour of Zr50Cu40Al10, Zr50Cu30Al10Ni10 and hypoeutectic Zr70Cu6Al8Ni16 BGAs in various environments including sodium chloride solution has been investigated using a slow strain rate technique at an initial strain rate of 5 × 10−6 s−1. It is found, for the first time, that the Zr70Cu6Al8Ni16 BGA has no susceptibility to SCC in a 0.5 M NaCl solution. On the other hand, Zr50Cu40Al10 and Zr50Cu30Al10Ni10 BGAs are highly susceptible to SCC in the NaCl solution, although they are not susceptible to SCC in de-ionized water, phosphate buffer, 0.5 M Na2SO4 and 0.5 M NaNO3 solutions. The possible cause of the high susceptibility to SCC in the NaCl solution for the Zr50Cu40Al10 and Zr50Cu30Al10Ni10 BGAs is discussed.  相似文献   

19.
The oxidation kinetics of the Zr64Cu16Ni10Al10 bulk metallic glass (BMG) roughly follows a two-stage rate law at both 433 and 593 K in air. An oxide film of 940 nm can be formed by oxidation at 593 K, which is ZrO2-enriched but Cu-depleted on the outer surface. The oxide film leads to a superior passivity in 0.5 M NaCl and great corrosion resistance improvements in other solutions. The oxidation effect on mechanical properties were characterized by nanoindentation, wedge indentation and compression tests. The Zr-based BMG still keeps the amorphous nature and its good mechanical properties are retained after oxidation.  相似文献   

20.
The effects of temperature, applied potential and hydrogen generation on the passive behaviour of nickel were investigated in lithium bromide aqueous solution using different electrochemical techniques: open circuit potential (OCP), potentiodynamic and potentiostatic measurements, and electrochemical impedance spectroscopy (EIS). From the polarization curves, it is observed that localised corrosion resistance decreases with temperature, the repassivation of nickel is more difficult at 75 °C and the hydrogen evolution reaction is favoured with an increase in temperature. Impedance results showed that the most suitable corrosion mechanism of nickel in LiBr solutions includes the double layer and the passive film formed on the nickel surface. The passive film of nickel partially disappears when a low cathodic potential is applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号