首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study aimed to evaluate the effects of length of chop of corn silage and forage:concentrate ratio (F:C) on performance and milk fatty acid profiles in dairy cows supplemented with flaxseed. Our hypothesis was that decreasing forage particle length and F:C ratio would increase unsaturated fatty acid flow to the small intestine and subsequent transfer of these unsaturated fatty acids into milk. Eight Holstein cows (648.1 ± 71.5 kg body weight; 109.6 ± 43.6 days in milk) were used in a replicated 4 × 4 Latin square design with 21-d periods and a 2 × 2 factorial arrangement of dietary treatments. Dietary factors were: 1) F:C ratios (dry matter basis) of 55:45 and 45:55; and 2) corn silage particle lengths of 9.52 and 19.05 mm. All experimental cows received 1 kg of flaxseed to substitute for 1 kg of a rolled barley grain-based concentrate daily. Diets were fed twice daily as a total mixed ration. Corn silage particle length and F:C ratio had no effect on dry matter intake, milk yield, and milk composition; however, feeding short cut corn silage depressed milk protein yield. Significant particle size × F:C ratio interactions were observed for milk fat proportions of C16:0, C18:1cis-9, and C18:2cis-9, trans-11 (a conjugated linoleic acid isomer). At short corn silage particle size, decreasing F:C ratio depressed milk fat proportion of C16:0. Conversely, feeding short corn silage at high F:C ratio increased the proportion of C18:1cis-9 and C18:2cis-9, trans-11 in milk fat. The milk fat proportion of C18:2trans-10, cis-12, a conjugated linoleic acid isomer that is associated with milk fat depression, was not affected by dietary treatment. Our results show that corn silage particle length and F:C ratio influence milk fatty acid profiles in dairy cows fed supplemental flaxseed as a source of polyunsaturated fatty acids.  相似文献   

2.
We examined the effects of 2 grass silage-based diets differing in forage:concentrate (FC) ratio and those of a red clover silage-based diet on intake, milk production, ruminal fatty acid (FA) biohydrogenation, milk FA composition, and milk fat globule (MFG) size distribution. Ten multiparous Nordic Red cows received the following treatments: grass silage-based diets containing high (70:30, HG) or low (30:70, LG) FC ratio or a red clover silage-based diet with an FC ratio of 50:50 (RC) on a dry matter basis. Determinations of MFG were performed from fresh milk samples without addition of EDTA so the results of fat globules >1 µm in diameter are emphasized instead of the entire globule population. Lower FC ratio in grass silage-based diets increased milk production with no effect on daily fat yield, leading to 13% lower milk fat concentration. The effect of FC ratio on MFG size was moderate. It did not affect the volume-weighted diameter in grass silage-based diets, although LG lowered the volume-surface diameter of MFG in the size class >1 µm compared with HG. Compared with HG, feeding LG moderately decreased the biohydrogenation of 18:2n-6, leading to a higher level of polyunsaturated fatty acids in milk fat. Feeding RC lowered milk fat concentration and daily milk fat yield compared with grass silage-based diets. The volume-weighted diameter of MFG in the size class >1 µm was smaller in RC milk compared with grass silage-based diets. Feeding RC increased the flow of 18:3n-3 at the omasum by 2.4-fold and decreased the apparent ruminal 18:3n-3 biohydrogenation compared with grass silage-based diets despite similar intake of 18:3n-3. It also resulted in the lowest amount of saturated FA and the highest amounts of cis-9 18:1, 18:3n-3, and polyunsaturated FA in milk. In conclusion, LG decreased milk fat content and induced minor changes in MFG size distribution compared with HG, whereas RC lowered milk fat production, altered milk FA composition to nutritionally more beneficial direction, and led to smaller MFG compared with grass silage-based diets.  相似文献   

3.
Within-farm variation in forage composition can be substantial and potentially costly, and it presents challenges for sampling the forage accurately. We hypothesized that day-to-day variation in forage neutral detergent fiber (FNDF) concentrations and diet variation caused by sampling error would have negative effects on production measures in lactating dairy cows. Twenty-four Holstein cows (73 d in milk) were used in 8 replicated 3 × 3 Latin squares with 21-d periods. Treatments were (1) control (CON), (2) variable (VAR), and (3) overreacting (ORR). On average, over the 21-d period, all 3 treatments were the same [24.7% FNDF and 48.2% forage dry matter (DM) composed of 67% alfalfa silage and 33% grass silage]. The CON treatment was essentially consistent day-to-day in total forage and FNDF concentrations and proportion of alfalfa and grass silages. The VAR treatment changed daily (in a random pattern) in proportion of alfalfa and grass silages fed, which resulted in day-to-day changes in FNDF (range was 21.5 to 28%). The ORR treatment varied in a 5-d cyclic pattern in total forage and FNDF concentrations (26, 24, 28, and 21.5% FNDF). Over the 21 d, ORR (25.1 kg/d) had higher DM intake compared with CON (24.5 kg/d) and VAR (24.3 kg/d). Milk production (42.8 kg/d), milk fat (3.5%), and milk protein (2.8%) were not affected by treatment; however, a treatment × day interaction was observed for milk production. Lower daily milk yields for VAR and ORR compared with CON were rare; they only followed sustained 4- and 5-d periods of feeding higher FNDF diets compared with CON. In contrast, increased daily milk yields for VAR and ORR versus CON were more frequent and followed sustained diet changes of only 2 or 3 d. Lipolytic and lipogenic-related enzyme mRNA abundances in subcutaneous adipose tissue were not affected by treatment. Treatment × day interactions were observed for milk fatty acid markers of cellulolytic bacteria (iso-14:0, iso-15:0, iso-16:0) and lipolysis (18:0) and generally followed the expected response to changes in daily rations. Overall, extreme daily fluctuations in FNDF had no cumulative negative effect on production measures over a 21-d period, and daily responses to transient increases in FNDF were less than expected.  相似文献   

4.
The effect of linseed oil (LSO) supplementation on total-tract and ruminal nutrient digestibility, N metabolism, and ruminal fluid characteristics was investigated in dairy cows fed diets containing different forage to concentrate ratios (F:C). The experimental design was a 4 x 4 Latin square with 2 x 2 factorial arrangement of treatments. Four lactating Holstein cows were fed a forage-rich diet without LSO (F; F:C = 65:35, dry matter basis), a forage-rich diet with LSO (FO; F:C = 65:32, 3% LSO), a concentrate-rich diet without LSO (C; F:C = 35:65), or a concentrate-rich diet with LSO (CO; F:C = 35:62, 3% LSO). Total-tract digestibility of DM and OM was greater with supplemental LSO. A tendency for greater total-tract digestibility of NDF and ADF also was observed in cows fed LSO. Ruminal digestibility of NDF or ADF decreased when CO was fed compared with C. In contrast, feeding FO increased NDF or ADF digestibility compared with F. Although ruminal starch digestion was nearly complete with all diets, digestibility was greater when cows were fed C or CO compared with F or FO. Bacterial N flow to the duodenum decreased when FO was fed compared with F. In contrast, feeding CO increased bacterial-N flow compared with C. Neither F:C nor LSO supplementation affected ruminal pH or total VFA concentration in ruminal fluid. However, molar proportion of propionate was greater with C or CO compared with F or FO and increased with LSO supplementation regardless of F:C. Molar proportion of n-butyrate decreased with LSO supplementation. Total protozoal numbers in ruminal fluid decreased markedly only when CO was fed. Overall, data show that feeding LSO had no negative effects on total-tract digestion in dairy cows but may decrease ruminal fiber digestibility when fed with high-concentrate diets. The widely spread idea that LSO decreases digestibility, arising from studies with sheep, did not seem to apply to lactating cows fed 3% LSO.  相似文献   

5.
The objectives of this study were to quantify the effects on production performance and milk fatty acid (FA) profile of feeding dairy cows extruded linseed (EL), a feed rich in α-linolenic acid, and to assess the variability of the responses related to the dose of EL and the basal diet composition. This meta-analysis was carried out using only data from trials including a control diet without fat supplementation. The dependent variables were defined by the mean differences between values from EL-supplemented groups and values from control groups. The data were processed by regression testing the dose effect, multivariable regression testing the effect of each potential interfering factor associated with the dose effect, and then stepwise regression with backward elimination procedure with all potential interfering factors retained in previous steps. This entire strategy was also applied to a restricted data set, including only trials conducted inside a practical range of fat feeding (only supplemented diets with <60 g of fat/kg of dry matter and supplemented with <600 g of fat from EL). The whole data set consisted of 17 publications, representing 21 control diets and 29 EL-supplemented diets. The daily intake of fat from EL supplementation ranged from 87 to 1,194 g/cow per day. The dry matter intake was numerically reduced in high-fat diets. Extruded linseed supplementation increased milk yield (0.72 kg/d in the restricted data set) and decreased milk protein content by a dilutive effect (?0.58 g/kg in the restricted data set). No effect of dose or diet was identified on dry matter intake, milk yield, or milk protein content. Milk fat content decreased when EL was supplemented to diets with high proportion of corn silage in the forage (?2.8 g/kg between low and high corn silage-based diets in the restricted data set) but did not decrease when the diet contained alfalfa hay. Milk trans-10 18:1 proportion increased when EL was supplemented to high corn silage-based diets. A shift in ruminal biohydrogenation pathways, from trans-11 18:1 to trans-10 18:1, probably occurred when supplementing EL with high corn silage-based diets related to a change in the activity or composition of the microbial equilibrium in the rumen. The sum of pairs 4:0 to 14:0 (FA synthesized de novo by the udder), palmitic acid, and the sum of saturated FA decreased linearly, whereas oleic acid, vaccenic acid, rumenic acid, α-linolenic acid, and the sums of mono- and polyunsaturated FA increased linearly when the daily intake of fat from EL was increased. In experimental conditions, EL supplementation increased linearly proportions of potentially human health-beneficial FA in milk (i.e., oleic acid, vaccenic acid, rumenic acid, α-linolenic acid, total polyunsaturated FA), but should be used cautiously in corn silage-based diets.  相似文献   

6.
The effects of supplementation with grass silage and replacement of some corn in the concentrate with soybean meal (SBM) on milk production, and milk fatty acid (FA) profiles were evaluated in a replicated 4 × 4 Latin square study using 16 dairy cows grazing pasture composed of ryegrass, Kentucky bluegrass, and white clover. Each experimental period lasted for 3 wk. The 4 dietary treatments were PC, 20 h of access to grazing pasture, supplemented with 6 kg/d of corn-based concentrate mixture (96% corn; C); PCSB, 20 h of access to grazing pasture, supplemented with 6 kg/d of corn- and SBM-based concentrate mixture (78% corn and 18% SBM; CSB); SC, 7 h of access to grazing pasture during the day and 13 h of ad libitum access to grass silage at night, supplemented with 6 kg/d of C concentrate; and SCSB, 7 h of access to grazing pasture during the day and 13 h of ad libitum access to grass silage at night, supplemented with 6 kg/d of CSB concentrate. The concentrate mixtures were offered twice each day in the milking parlor and were consumed completely. Grass silage supplementation reduced dietary crude protein and concentration of total sugars, and dietary SBM inclusion increased dietary crude protein concentration and decreased dietary starch concentration. Milk yield and energy-corrected milk were increased by SBM supplementation of cows with access to grass silage. Milk protein concentration was lower in cows offered grass silage, regardless of whether SBM was fed. Dietary SBM inclusion tended to increase milk fat concentration. Plasma urea N was reduced by silage feeding and increased by SBM supplementation. Supplementation with grass silage overnight could represent a useful strategy for periods of lower pasture availability. Dietary inclusion of SBM in solely grazing cows had no effects on milk production and composition, exacerbated the inefficient capture of dietary N, and increased diet cost. Grass silage supplementation affected milk FA profiles, increasing both the FA derived from de novo synthesis and those derived from rumen microbial biomass, and decreasing the sum of C18 FA (mostly derived from diet or from mobilization of adipose tissue reserves). Milk fat concentrations of conjugated linoleic acid cis-9, trans-11, vaccenic acid (18:1 trans-11), and linolenic acid (18:3n-3) were unaffected by grass silage supplementation, suggesting that partial replacement of pasture by unwilted grass silage does not compromise the dietary quality of milk fat for humans.  相似文献   

7.
The effect of supplementation of increasing amounts of extruded linseed in diets based on hay (H; experiment 1) or corn silage (CS; experiment 2) was investigated in regard to dairy performance and the milk fatty acid (FA) composition. In each experiment, 4 lactating multiparous Holstein cows were used in a 4 × 4 Latin square design (28-d periods). The cows were fed a diet (50:50 and 40:60 concentrate:forage ratio for experiments 1 and 2, respectively; dry matter basis) without supplementation (H0 or CS0) or supplemented with 5% (H5 or CS5), 10% (H10 or CS10), or 15% (H15 or CS15) of extruded linseed. Regardless of the forage type, diet supplementation with increasing amounts of extruded linseed had no effect on the dry matter intake, milk yield, or protein content or yield. In contrast, the milk fat content decreased progressively from H0 to H10 diets, and then decreased strongly with the H15 diet in response to increasing amounts of extruded linseed. For CS diets, the milk fat content initially decreased from CS0 to CS10, but then increased with the CS15 diet. For the H diets, the milk saturated FA decreased (−24.1 g/100 g of FA) linearly with increasing amounts of extruded linseed, whereas the milk monounsaturated FA (+19.0 g/100 g), polyunsaturated FA (+4.9 g/100 g), and total trans FA (+14.7 g/100 g) increased linearly. For the CS diets, the extent of the changes in the milk FA composition was generally lower than for the H diets. Milk 12:0 to 16:0 decreased in a similar manner in the 2 experiments with increasing amounts of extruded linseed intake, whereas 18:0 and cis-9 18:1 increased. The response of total trans 18:1 was slightly higher for the CS than H diets. The milk trans-10 18:1 content increased more with the CS than the H diets. The milk cis-9,trans-11 conjugated linoleic acid response to increasing amounts of extruded linseed intake was linear and curvilinear for the H diets, whereas it was only linear for the CS diets. The milk 18:3n-3 percentage increased in a similar logarithmic manner in the 2 experiments. It was concluded that the milk FA composition can be altered by extruded linseed supplementation with increasing concentrations of potentially health-beneficial FA (i.e., oleic acid, 18:3n-3, cis-9,trans-11 conjugated linoleic acid, and odd- and branched-chain FA) and decreasing concentrations of saturated FA. Extruded linseed supplementation increased the milk trans FA percentage.  相似文献   

8.
9.
This experiment studied the effect of 3 different physical forms of linseed fatty acids (FA) on cow dairy performance, milk FA secretion and composition, and their relationship with methane output. Eight multiparous, lactating Holstein cows were assigned to 1 of 4 dietary treatments in a replicated 4 × 4 Latin square design: a control diet (C) based on corn silage (59%) and concentrate (35%), and the same diet supplemented with whole crude linseed (CLS), extruded linseed (ELS), or linseed oil (LSO) at the same FA level (5% of dietary dry matter). Each experimental period lasted 4 wk. Dry matter intake was not modified with CLS but was lowered with both ELS and LSO (−3.1 and −5.1 kg/d, respectively) compared with C. Milk yield and milk fat content were similar for LSO and ELS but lower than for C and CLS (19.9 vs. 22.3 kg/d and 33.8 vs. 43.2 g/kg, on average, respectively). Compared with diet C, CLS changed the concentrations of a small number of FA; the main effects were decreases in 8:0 to 16:0 and increases in 18:0 and cis-9 18:1. Compared with diet C (and CLS in most cases), LSO appreciably changed the concentrations of almost all the FA measured; the main effects were decreases in FA from 4:0 to 16:0 and increases in 18:0, trans-11 16:1, all cis and trans 18:1 (except trans-11 18:1), and nonconjugated trans 18:2 isomers. The effect of ELS was either intermediate between those of CLS and LSO or similar to LSO with a few significant exceptions: increases in 17:0 iso; 18:3n-3; trans-11 18:1; cis-9, trans-11 conjugated linoleic acid; and trans-11, trans-13 conjugated linoleic acid and a smaller increase in cis-9 18:1. The most positive correlations (r = 0.87 to 0.91) between milk FA concentrations and methane output were observed for saturated FA from 6:0 to 16:0 and for 10:1, and the most negative correlations (r = −0.86 to −0.90) were observed for trans-16+cis-14 18:1; cis-9, trans-13 18:2; trans-11 16:1; and trans-12 18:1. Thus, milk FA profile can be considered a potential indicator of in vivo methane output in ruminants.  相似文献   

10.
Sorghum silage has been shown to be a good alternative to corn silage for dairy cows; however, studies regarding heifers are insufficiently explored. Therefore, the objective of this study was to evaluate effects of changing forage to concentrate ratio (FOR:CON) in diets based on sorghum silage on N digestibility, rumen fermentation, N balance, C excretion, and microbial N yield in limit-fed dairy heifers. A split-plot 4 × 4 Latin square design with 19-d periods (15 d of adaptation and 4 d of sampling) was conducted with 8 rumen cannulated dairy heifers (age 13.7 ± 0.6 mo and weight 364.8 ± 17.6 kg). Heifers were fed sorghum silage–based diets with 4 FOR:CON (85:15, 75:25, 65:35, and 55:45) balanced for similar metabolizable energy intake per unit of body weight and crude protein concentration. Diets were fed to allow 900 to 1,000 g/d body weight gain and were fed once daily. Total collection of feces and urine was completed on d 15 to 19 to determine N, C, urea N, allantoin, uric acid, and creatinine excretion. Rumen contents were sampled on d 19 at 0, 1.5, 3, 4.5, 6, 9, 13, 17, 21, and 23 h after feeding to measure pH, volatile fatty acid (VFA), ammonia-N, and free AA concentrations. The pH decreased linearly while ammonia-N and free AA levels increased linearly with decreasing FOR:CON of diets. Although mean total VFA did not differ among treatment diets, molar proportions of VFA did. Acetate proportion decreased while propionate and butyrate increased with decreasing FOR:CON. Intake of N and urea N excretion decreased with decreasing forage proportion in diets while total N excretion, apparent N digestibility, and N retention were not different. Intake of C and excretion in feces (g/d) decreased linearly with decreasing FOR:CON in diets. Creatinine, allantoin, and uric acid excretion were not affected by FOR:CON; however, microbial N yield tended to increase linearly with greater concentrate in diets. Heifers limit fed diets based on sorghum silage demonstrated the effect of available ammonia-N and readily fermentable carbohydrates with subsequent effects on nutrient utilization when different FOR:CON were applied. Based on the presented results, FOR:CON 65:35 had the most suitable balance of available ammonia-N and readily fermentable carbohydrates for the most optimal results.  相似文献   

11.
The effects of varying amounts of linseed oil (LSO) in grazing dairy cows’ diet on milk conjugated linoleic acid (cis-9, trans-11 CLA) were investigated in this study. Twelve Holstein cows in midlactation (150 ± 19 DIM) were placed on alfalfa-based pasture and assigned to 4 treatments using a 4 × 4 Latin square design with 3-wk periods. Treatments were: 1) control grain supplement; 2) control grain supplement containing 170 g of LSO (LSO1); 3) control grain supplement containing 340 g of LSO (LSO2); and 4) control grain supplement containing 510 g of LSO (LSO3). Grain supplements were offered at 7 kg/d. Additional 100 g/d of algae, divided evenly between the 2 feeding times, were added to every treatment diet. Milk samples were collected during the last 3 d of each period and analyzed for chemical and fatty acid composition. Treatments had no effect on milk production (18.9, 18.5, 19.6, and 19.1 kg/d for treatments 1 to 4, respectively). Linseed oil supplementation caused a quadratic increase in milk fat (3.23, 3.44, 3.35, and 3.27% for treatments 1 to 4, respectively) and protein (3.03, 3.19, 3.12, and 3.08%) contents. Concentrations (g/100 g of fatty acids) of milk cis-9, trans-11 CLA (1.12, 1.18, 1.39, and 1.65 for treatments 1 to 4, respectively) and VA (3.39, 3.62, 4.25, and 4.89) linearly increased with LSO supplementations. Results from this trial suggest that the increase in milk cis-9, trans-11 CLA was proportional to the amounts of LSO fed. In conclusion, adding LSO to grazing dairy cow diets can improve the nutritional value of milk without compromising milk composition or cow performance.  相似文献   

12.
Saturated and unsaturated fatty acid supplements (FS) were evaluated for effects on yield of milk and milk components, concentration of milk components including milk fatty acid profile, and energy balance. Eight ruminally and duodenally cannulated cows and 8 noncannulated cows were used in a replicated 4 × 4 Latin square design experiment with 21-d periods. Treatments were control and a linear substitution of 2.5% fatty acids from saturated FS (SAT; prilled, hydrogenated free fatty acids) for partially unsaturated FS (UNS; calcium soaps of long-chain fatty acids). The SAT treatment did not change milk fat concentration, but UNS linearly decreased milk fat in cannulated cows and tended to decrease milk fat in noncannulated cows compared with control. Milk fat depression with UNS corresponded to increased concentrations of trans-10, cis-12 conjugated linoleic acid and trans C18:1 fatty acids in milk. Milk fat profile was similar for SAT and control, but UNS decreased concentration of short- and medium-chain FA. Digestible energy intake tended to decrease linearly with increasing unsaturated FS in cannulated and noncannulated cows. Increasing unsaturated FS linearly increased empty body weight and net energy gain in cannulated cows, whereas increasing saturated FS linearly increased plasma insulin. Efficiency of conversion of digestible energy to milk tended to decrease linearly with increasing unsaturated FS for cannulated cows only. Addition of SAT provided little benefit to production and energy balance, whereas UNS decreased energy intake and milk energy yield.  相似文献   

13.
This study investigated the effects of dietary replacement of corn silage (CS) with 2 cultivars of forage millet silages [i.e., regular millet (RM) and sweet millet (SM)] on milk production, apparent total-tract digestibility, and ruminal fermentation characteristics of dairy cows. Fifteen lactating Holstein cows were used in a replicated 3 × 3 Latin square experiment and fed (ad libitum) a high-forage total mixed ration (68:32 forage:concentrate ratio). Dietary treatments included CS (control), RM, and SM diets. Experimental silages constituted 37% of each diet DM. Three ruminally fistulated cows were used to determine the effect of dietary treatments on ruminal fermentation and total-tract nutrient utilization. Relative to CS, RM and SM silages contained 36% more crude protein, 66% more neutral detergent fiber (NDF), and 88% more acid detergent fiber. Cows fed CS consumed more dry matter (DM; 24.4 vs. 22.7 kg/d) and starch (5.7 vs. 3.7 kg/d), but less NDF (7.9 vs. 8.7 kg/d) than cows fed RM or SM. However, DM, starch and NDF intakes were not different between forage millet silage types. Feeding RM relative to CS reduced milk yield (32.7 vs. 35.2 kg/d), energy-corrected milk (35.8 vs. 38.0 kg/d) and SCM (32.7 vs. 35.3 kg/d). However, cows fed SM had similar milk, energy-corrected milk, and solids-corrected milk yields than cows fed CS or RM. Milk efficiency was not affected by dietary treatments. Milk protein concentration was greatest for cows fed CS, intermediate for cows fed SM, and lowest for cows fed RM. Milk concentration of solids-not-fat was lesser, whereas milk urea nitrogen was greater for cows fed RM than for those fed CS. However, millet silage type had no effect on milk solids-not-fat and milk urea nitrogen levels. Concentrations of milk fat, lactose and total solids were not affected by silage type. Ruminal pH and ruminal NH3-N were greater for cows fed RM and SM than for cows fed CS. Total-tract digestibility of DM (average = 67.9%), NDF (average = 53.9%), crude protein (average = 63.3%), and gross energy (average = 67.9%) were not influenced by dietary treatments. It was concluded that cows fed CS performed better than those fed RM or SM likely due to the higher starch and lower NDF intakes. However, no major differences were noted between the 2 forage millet silage cultivars.  相似文献   

14.
The objective of this study was to evaluate the effects of supplementing xylanase on production performance, nutrient digestibility, and milk fatty acid profile in high-producing dairy cows consuming corn silage- or sorghum silage-based diets. Conventional corn (80,000 seeds/ha) and brown midrib forage sorghum (250,000 seeds/ha) were planted, harvested [34 and 32% of dry matter (DM), respectively], and ensiled for more than 10 mo. Four primiparous and 20 multiparous Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 19-d periods. Treatment diets consisted of (1) corn silage-based diet without xylanase, (2) corn silage-based diet with xylanase, (3) sorghum silage-based diet without xylanase, and (4) sorghum silage-based diet with xylanase. The xylanase product was supplemented at a rate of 1.5 g of product/kg of total DM. Corn silage had higher concentrations of starch (31.2 vs. 29.2%), slightly higher concentrations of crude protein (7.1 vs. 6.8%) and fat (3.7 vs. 3.2%), and lower concentrations of neutral detergent fiber (36.4 vs. 49.0%) and lignin (2.1 vs. 5.7%) than sorghum silage. Xylanase supplementation did not affect DM intake, milk yield, milk fat percentage and yield, milk protein percentage and yield, lactose percentage and yield, and 3.5% fat-corrected milk yield. Cows consuming corn silage-based diets consumed 13% more DM (28.8 vs. 25.5 kg/d) and produced 5% more milk (51.6 vs. 48.9 kg/d) than cows consuming sorghum silage-based diets. Milk from cows consuming sorghum silage-based diets had 16% greater fat concentrations (3.84 and 3.30%) than milk from cows consuming corn silage-based diets. This resulted in 8% greater fat yields (1.81 vs. 1.68 kg/d). Silage type did not affect milk protein and lactose concentrations. Xylanase supplementation did not affect nutrient digestibility. Cows consuming corn silage-based diets showed greater DM (77.3 vs. 73.5%), crude protein (78.0 vs. 72.4), and starch (99.2 vs. 96.5%) digestibilities than cows consuming sorghum silage-based diets. In conclusion, xylanase supplementation did not improve production performance when high-producing dairy cows were fed corn silage- or sorghum silage-based diets. In addition, production performance can be sustained by feeding sorghum silage in replacement of corn silage.  相似文献   

15.
The objective of this study was to determine the effects of feeding an increased amount of extruded flaxseed with high proportions of n-3 fatty acids (FA) to transition dairy cows on performance, energy balance, and FA composition in plasma, adipose tissue, and milk fat. Multiparous Israeli-Holstein dry cows (n = 44) at 256 d of pregnancy were assigned to 2 treatments: (1) control cows were fed prepartum a dry-cow diet and postpartum a lactating-cow diet that consisted of 5.8% ether extracts; and (2) extruded flaxseed (EF) cows were supplemented prepartum with 1 kg of extruded flaxseed (7.9% dry matter)/cow per d, and postpartum were fed a diet containing 9.2% of the same supplement. The EF supplement was fed until 100 d in milk. On average, each pre- and postpartum EF cow consumed 160.9 and 376.2 g of C18:3n-3/d, respectively. Postpartum dry matter intake was 3.8% higher in the EF cows. Milk production was 6.4% higher and fat content was 0.4% U lower in the EF group than in the controls, with no differences in fat and protein yields. Energy balance in the EF cows was more positive than in the controls; however, no differences were observed in concentrations of nonesterified fatty acids and glucose in plasma. Compared with controls, EF cows had greater proportions of C18:3n-3 in plasma and adipose tissue. The proportion of n-3 FA in milk fat was 3.7-fold higher in the EF cows, and the n-6:n-3 ratio was decreased from 8.3 in controls to 2.3 in the EF cows. Within-group tests revealed that the C18:3n-3 content in milk fat in the EF cows was negatively correlated with milk fat percentage (r = –0.91) and yield (r = –0.89). However, no decrease in de novo synthesis of less than 16-carbon FA was found in the EF group, whereas C16:0 yields were markedly decreased. It appears that the enrichment of C18:3n-3 in milk fat was limited to approximately 2%, and the potential for increasing this n-3 FA in milk is higher for cows with lower milk fat contents. In conclusion, feeding increased amounts of C18:3n-3 during the transition period enhanced dry matter intake postpartum, increased milk production, decreased milk fat content, and improved energy balance. Increased amounts of EF considerably influenced the FA profile of plasma, adipose tissue, and milk fat. However, the extent of C18:3n-3 enrichment in milk fat was limited and was negatively correlated with milk fat content and yield.  相似文献   

16.
The objective of this study was to determine the long-term effects of feeding monensin on milk fatty acid (FA) profile in lactating dairy cows. Twenty-four lactating Holstein dairy cows (1.46 ± 0.17 parity; 620 ± 5.9 kg of live weight; 92.5 ± 2.62 d in milk) housed in a tie-stall facility were used in the study. The study was conducted as paired comparisons in a completely randomized block design with repeated measurements in a color-coded, double blind experiment. The cows were paired by parity and days in milk and allocated to 1 of 2 treatments: 1) the regular milking cow total mixed ration (TMR) with a forage-to-concentrate ratio of 60:40 (control TMR; placebo premix) vs. a medicated TMR [monensin TMR; regular TMR + 24 mg of Rumensin Premix per kg of dry matter (DM)] fed ad libitum. The animals were fed and milked twice daily (feeding at 0830 and 1300 h; milking at 0500 and 1500 h). Milk samples were collected before the introduction of treatments and monthly thereafter for 6 mo and analyzed for FA composition. Monensin reduced the percentage of the short-and medium-chain saturated FA 7:0, 9:0, 15:0, and 16:0 in milk fat by 26, 35, 19, and 6%, respectively, compared with the control group. Monensin increased the percentage of the long-chain saturated FA in milk fat by 9%, total monounsaturated FA by 5%, total n-6 polyunsaturated FA (PUFA) by 19%, total n-3 PUFA by 16%, total cis-18:1 by 7%, and total conjugated linoleic acid (CLA) by 43% compared with the control group. Monensin increased the percentage of docosahexaenoic acid (22:6n-3), docosapentaenoic acid (22:5n-3), and cis-9, trans-11 CLA in milk fat by 19, 13, and 43%, respectively, compared with the control. These results suggest that monensin was at least partly effective in inhibiting the biohydrogenation of unsaturated FA in the rumen and consequently increased the percentage of n-6 and n-3 PUFA and CLA in milk, thus enhancing the nutritional properties of milk with regard to human health.  相似文献   

17.
The objectives of this experiment were to investigate the effects of lauric (LA) and myristic (MA) acids on ruminal fermentation, production, and milk fatty acid (FA) profile in lactating dairy cows and to identify the FA responsible for the methanogen-suppressing effect of coconut oil. The experiment was conducted as a replicated 3 × 3 Latin square. Six ruminally cannulated cows (95 ± 26.4 DIM) were subjected to the following treatments: 240 g/cow per day each of stearic acid (SA, control), LA, or MA. Experimental periods were 28 d and cows were refaunated between periods. Lauric acid reduced protozoal counts in the rumen by 96%, as well as acetate, total VFA, and microbial N outflow from the rumen, compared with SA and MA. Ruminal methane production was not affected by treatment. Dry matter intake was reduced 35% by LA compared with SA and MA, which resulted in decreased milk yield. Milk fat content also was depressed by LA compared with SA and MA. Treatment had no effect on milk protein content. All treatments increased milk concentration of the respective treatment FA. Concentration of C12:0 was more than doubled by LA, and C14:0 was increased (45%) by MA compared with SA. Concentration of milk FA < C16 was 20% lower for LA than MA. Concentrations of trans 18:1 FA (except trans 12) and CLA isomers were increased by LA compared with SA and MA. Overall, the concentrations of saturated FA in milk fat were reduced, and that of > C16 FA and MUFA were increased, by LA compared with the other treatments. In this study, LA had profound effects on ruminal fermentation, mediated through inhibited microbial populations, and decreased DMI, milk yield, and milk fat content. Despite the significant decrease in protozoal counts, however, LA had no effect on ruminal methane production. Thus, the antimethanogenic effect of coconut oil, observed in related studies, is likely due to total FA application level, the additive effect of LA and MA, or a combination of both. Both LA and MA modified milk FA profile significantly.  相似文献   

18.
Several experiments were conducted over the past few years to evaluate the feeding value of flax seed and oil in dairy cow diets. The current meta-analysis and meta-regression was undertaken to assess the overall effect of different forms of flax, as a source of trienoic (cis-9,cis-12,cis-15 18:3) fatty acids (FA), on lactation performance and on transfer efficiency of its constituent n-3 FA from diet to milk fat. Comparisons were first conducted with nonsupplemented controls or with diets containing either saturated (mainly 16:0 or 18:0 or both), monoenoic (mainly cis-9 18:1), or dienoic (mainly cis-9,cis-12 18:2) FA. Results indicate that supplementing flax seed and oil decreased dry matter intake, as well as actual and energy-corrected milk yield without affecting the efficiency of utilization of dietary dry matter or energy as compared with nonsupplemented iso-energetic controls. When compared with the other 3 types of dietary fat evaluated, flax rich in trienoic FA supported a yield of energy-corrected milk similar to supplements rich in saturated, monoenoic, or dienoic FA. Greater milk fat concentration and feed efficiency were observed with saturated supplements. However, milk fat concentration and yield were lower with dienoic FA than with flax supplements. Further analyses were conducted to compare the effect of different forms of flax oil, seed, or fractions of seed. Among the 6 categories evaluated, mechanically processed whole seed (rolled or ground) allowed the greatest yield of energy-corrected milk and the best feed efficiency when compared with free oil, intact or extruded whole seed, protected flax, and flax hulls. Feeding protected flax and flax hulls allowed the greatest milk fat concentration of cis-9,cis-12,cis-15 18:3. Moreover, the greatest transfer efficiencies of this fatty acid from diet to milk were recorded with the same 2 treatments, plus the mechanically processed whole seed. These results make this last category the most suitable treatment, among the 6 flax forms evaluated, to combine optimum lactation performance and protection of flax constituent cis-9,cis-12,cis-15 18:3.  相似文献   

19.
Linseed and rapeseed, good sources of 18:3 n-3 and cis9-18:1, respectively, have been shown to improve the bovine milk fatty acid (FA) profile. However, rapeseed, unlike linseed, has little effect on the concentration of 18:3 n-3 in milk fat. Alfalfa protein concentrate (APC), besides being a valuable protein source for milk production, contains lipids rich in 18:3 n-3. Therefore, this experiment aimed at (1) evaluating the transfer efficiency of unsaturated FA (UFA), especially 18:3 n-3, of APC to bovine milk fat, and (2) evaluating whether extruded rapeseed (ER) associated with APC is as effective as extruded linseed (EL) in enhancing the bovine milk fat composition. Six lactating Holstein cows were used in a replicated 2 × 2 Latin square design with 2 iso-energy, iso-nitrogen and iso-FA corn silage-based diets (EL and ER-APC) and two 21-d periods. Extruded linseed, as main UFA source, was included in the first diet, whereas ER, as main UFA source, and APC, as supplemental 18:3 n-3, were included in the second diet. Diets were distributed as a restricted total mixed ration. Compared with the EL diet, the ER-APC diet, where ER was associated with APC, increased milk concentration of 18:3 n-3 (1.18 vs. 1.31% of FA) and cis9-18:1 (18.35 vs. 20.01% of FA). The apparent transfer efficiency of 18:3 n-3 from diet to milk was almost twice as much for the ER-APC diet than for the EL diet (7.4 vs. 3.8% of intake). Extruded linseed accounted for 84% of 18:3 n-3 provided in the EL diet, whereas ER and APC accounted for 33 and 38% of 18:3 n-3 provided in the ER-APC diet, respectively. Because both EL and ER underwent extrusion in similar conditions, these results suggest that 18:3 n-3 of EL in the EL diet and ER in the ER-APC diet were subjected to more extensive ruminal biohydrogenation than 18:3 n-3 of APC in the ER-APC diet. This experiment shows that corn silage-based diets supplemented with ER as the main UFA source, associated with APC as supplemental 18:3 n-3, are as effective as corn silage-based diets supplemented with EL as the main UFA source, in increasing bovine milk UFA and 18:3 n-3 contents. Furthermore, at similar levels of dietary incorporation, this experiment shows that the ruminal bypass of 18:3 n-3 is higher for APC compared with EL.  相似文献   

20.
The study aimed to evaluate the effects of linseed and oregano supplementation to the diet of goats on fatty acid profile and sensory properties of Padraccio, a typical cheese produced during spring through summer in the Basilicata region (southern Italy). Extruded linseed and dried oregano inflorescences were integrated in the pelleted concentrate supplementation (500 g/head per day) in 21 grazing goats that were randomly assigned, 7 per group, to the following experimental treatments: concentrate, concentrate with addition of linseed, and concentrate with addition of linseed and oregano. Pooled milk from each group was used in cheesemaking. From a nutritional perspective, integration of extruded linseed in the goat diet improved the fatty acid profile of Padraccio cheese. Moreover, the cheese from this group evidenced the highest scoring on color, flavor, texture, and overall liking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号