首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
目的 为进一步提高分割精度,在模糊聚类的基础上引入统计信息,提出一种鲁棒型空间约束的模糊聚类分割算法。方法 基于局部空间信息的先验概率与后验概率,提出一种新型空间约束项,并通过卷积操作提高运行效率;进而引入负对数联合概率作为测度函数,进一步提高算法对于各像素点所属类别的甄别能力;同时将测度函数与空间约束项整合至目标函数中,通过迭代更新各参数达到最小化目标函数的目的。结果 对于合成图像的实验结果表明,本文算法对于噪声类型和噪声强度具有较强的鲁棒性;对于彩色图像的实验结果表明,在适当的特征描述符的辅助下,本文算法也能够获得令人满意的分割结果和较高的分割精度。结论 本文算法克服了现有算法的缺陷,进一步提升了图像的分割精度。其适用于分割带噪声图像,且在适当纹理特征的辅助下分割彩色图像,与同类算法的比较实验结果验证了本文算法的有效性。  相似文献   

2.
模糊C均值(FCM)聚类算法用于图像分割具有简单直观、易于实现的特点,但是存在计算量大、运算速度慢、抗噪能力差等问题,为解决上述问题提出了一种改进的快速FCM算法(FFCM),方法将空间信息融入到标准FCM算法中,将图像从像素空间映射到其厌度直方图特征空间,实现了快速聚类,然后在快速聚类的基础上,充分利用像素的邻域特性,依据最大隶属度原则,划分图像像素的类别归属,对隶属度函数做一定改进.实验结果表明,既能快速有效地分割图像,又具有较好地抗噪能力.  相似文献   

3.
目的 传统模糊C-均值聚类应用于图像分割仅考虑像素本身的聚类问题,无法克服噪声干扰对图像分割结果的影响,不利于受到噪声干扰的工业图像、医学影像和高分遥感影像等进行目标提取、识别和解译。嵌入像素空间邻域信息或局部信息的鲁棒模糊C-均值聚类分割算法是近年来图像分割理论研究中的热点课题。为此,针对现有的鲁棒核空间模糊聚类算法非常耗时且抑制噪声能力弱、不适合强噪声干扰下大幅面图像快速分割等问题,提出一种快速鲁棒核空间模糊聚类分割算法。方法 利用待分割图像中像素邻域的灰度信息和空间位置等信息构建线性加权滤波图像,对其进行鲁棒核空间模糊聚类。为了进一步提高算法实时性,引入当前聚类像素与其邻域像素均值所对应的2维直方图信息,构造一种基于2维直方图的鲁棒核空间模糊聚类快速分割最优化数学模型,采用拉格朗日乘子法获得图像分割的像素聚类迭代表达式。结果 对大幅面图像添加一定强度的高斯、椒盐以及混合噪声,以及未加噪标准图像的分割测试结果表明,本文算法比基于邻域空间约束的核模糊C-均值聚类等算法的峰值信噪比至少提高1.5 dB,误分率降低约5%,聚类性能评价的划分系数提高约10%,运行速度比核模糊C-均值聚类和基于邻域空间约束的鲁棒核模糊C-均值聚类算法至少提高30%,与1维直方图核空间模糊C-均值聚类算法具有相当的时间开销,所得分割结果具有较好的主观视觉效果。结论 通过理论分析和实验验证,本文算法相比现有空间邻域信息约束的鲁棒核空间模糊聚类等算法具有更强的抗噪鲁棒性、更优的分割性能和实时性,对大幅面遥感、医学等影像快速解译具有积极的促进作用,能更好地满足实时性要求较高场合的图像分割需要。  相似文献   

4.
针对Krinidis和公茂果等提出的系列鲁棒模糊局部C-均值聚类算法存在聚类中心迭代公式缺乏严格数学理论基础的不足,于是将其聚类目标函数及其约束条件采用拉格朗日乘子法进行严格数学推导,从而获得最优解逼近的隶属度和聚类中心迭代表达式,并通过多次循环迭代实现图像聚类分割。实验结果表明,本文所建议的鲁棒模糊局部C-均值聚类分割算法是有效的,相比现有鲁棒模糊局部C-均值聚类分割算法更适合复杂遥感等图像的分割需要。  相似文献   

5.
黄金土 《福建电脑》2014,(4):120-122
本文分析了模糊聚类在图像分割领域的应用,介绍了模糊集和聚类分析的作用,最后引出了模糊C均值聚类图像分割算法。  相似文献   

6.
针对现有鲁棒图形模糊聚类算法难以满足强噪声干扰下大幅面图像快速分割的需要,提出一种快速鲁棒核空间图形模糊聚类分割算法。该算法将欧氏空间样本通过核函数映射至高维空间;采用待分割图像中像素邻域的灰度和空间等信息构建线性加权滤波图像,对其进行鲁棒核空间图形模糊聚类;并引入当前聚类像素与其邻域像素均值所对应的二维直方图信息,获得鲁棒核空间图形模糊聚类快速迭代表达式。对大幅面图像添加高斯和椒盐噪声进行分割测试,实验结果表明:本文算法相比基于图形模糊聚类等分割算法的分割性能、抗噪鲁棒性和实时性有了显著提高。  相似文献   

7.
用于图像分割的粗糙集改进模糊聚类方法   总被引:2,自引:0,他引:2       下载免费PDF全文
采用一种新的基于粗糙集理论的图像分割算法。通过提取直方图的外层,以及计算像素点周围的局部模糊程度来更新粗糙度。使用局部模糊粗糙度和待定算子来更新FCM算法中的隶属度函数。从粗糙集理论意义上来说,直方图的外层与上近似有关,而直方图取值与下近似有关。该方法通过对比传统的聚类分割算法和刘华军的改进算法,大大降低了时间复杂度,聚类效果显著。实验证明,该方法收敛性较强,运行时间较短,且具有良好的分割效果。  相似文献   

8.
《微型机与应用》2014,(15):40-42
提出了一种基于量子粒子群的改进模糊聚类图像分割算法。针对FCM图像分割算法对聚类中心初始值比较敏感的缺点,利用量子粒子群优化算法强大的全局搜索能力寻找最优解,能够有效降低图像分割算法对初始值的依赖程度;同时,用一种新的基于簇密度的距离度量公式来计算图像特征点与聚类中心点的距离,其在确定类中心时考虑数据集的全局信息,并且在迭代过程中采用动态隶属度,能够降低噪声干扰。仿真实验结果证明改进算法具有较好的性能。  相似文献   

9.
针对很多基于模糊C均值(FCM)的图像分割算法存在对噪声敏感和分割轮廓不清晰等问题,提出一种基于小波变换图像融合算法和FCM聚类算法的MR医学图像分割算法。在图像分割系统的第一阶段,利用Haar小波多分辨率特性保持像素间的空间信息;第二阶段,利用小波图像融合算法对得到的多分辨率图像和原始图像进行融合,进而增强被处理图像的清晰度并降低噪声;第三阶段,利用改进型FCM技术对所处理的图像进行分割。在BrainWeb数据集上进行实验,与现有相关算法相比,提出的算法具有较高的分割精度,且对噪声的鲁棒性比较强,处理时间也没有明显增加。  相似文献   

10.
利用模糊聚类算法对图像进行分割是一种比较经典的方法,但是标准的FCM算法并没有考虑像素的空间信息对聚类结果的影响。利用S函数将空间信息转为模糊聚类算法的目标函数的权值,从而使目标函数更合理。实验结果表明,改进算法较标准的FCM算法具有更好的分割效果。  相似文献   

11.
一种改进的基于模糊聚类的图像分割方法   总被引:13,自引:1,他引:13       下载免费PDF全文
针对亮度不一致的阴影路面的目标分割问题,对使用空间关系约束的模糊聚类算法进行了改进,即首先定义了像素之间以及像素与区域之间的近邻关系,并构造了像素与区域之间的空间关系隶属度矩阵,然后将此矩阵约束到传统的模糊C-均值聚类算法的隶属度矩阵中,最终形成了基于空间关系约束的模糊聚类算法。该算法只需设置很少的参数即可自动完成聚类。该算法在受光照影响导致目标亮度不一致的林荫道道路图像中进行了实验。实验结果表明,该算法对机器人导航中阴影路面的一致性分割方面具有良好的效果。  相似文献   

12.
周晚辉  刘文萍 《计算机工程》2010,36(24):211-213
模糊C均值算法是图像分割的常用方法,但该算法对噪声非常敏感。为此,提出一种新算法,在模糊C均值算法基础上引进Type-2模糊理论,以提高算法的分割准确性和鲁棒性。该算法对模糊C均值算法中每一个样本的隶属度进行分段线性拉伸,利用拉伸的结果作为一个新的隶属度函数,并用该函数对图像进行分割。实验结果表明,该算法准确性较高,且具有良好的抗噪能力。  相似文献   

13.
针对相对复杂图像目标对象的提取问题,本文先运用模糊C均值聚类算法(FCM)对图像进行模糊分割。再根据模糊分类后的图像,本文设计了一种图像目标提取方法。实验表明,这种方法能还原模糊分类后的图像目标,并使背景部分替换成其他颜色,从而实现图像目标的提取。  相似文献   

14.
基于变分水平集的图像模糊聚类分割   总被引:4,自引:0,他引:4  
结合变分水平集方法和模糊聚类,提出了一个基于变分水平集的图像聚类分割模型.该模型引入了一个基于图像局部信息的外部模糊聚类能量和一个新的关于零水平集的正则化能量,使得该模型对噪声图像的聚类分割更具鲁棒性.通过在能量泛函中加入一个内部约束能量约束水平集函数为符号距离函数,可以使水平集演化过程无需重新初始化.进一步提出了一种变分形式的聚类中心更新方法,实现了半监督的图像聚类分割.实验中采用不同类型的图像与FCM聚类模型、CV模型、Samson模型进行了对比实验,实验结果显示,该模型能够克服图像中噪声的影响,取得较满意的聚类分割效果.  相似文献   

15.
提出了一种结合C-均值聚类算法和模糊熵的图像分割方法,该方法先采用C均值聚类算法对含噪图像进行初步分割,再利用模糊熵准则作后续处理。该方法一方面能够继承C-均值聚类算法的优点,可以灵活地用在基于多特征和多阂值的图像分割中,另一方面充分考虑了图像的区域信息,利用模糊熵最小作为准则,对c均值聚类算法初步分割结果的错分类点作了进一步的处理,克服了C-均值聚类算法对噪声敏感的缺点。实验结果表明,本文方法在运算开销上只比C-均值聚类算法多4~6S,对于低信噪比的图像能够取得优于C-均值聚类算法的分割效果。  相似文献   

16.
王备  王继成 《微机发展》2007,17(10):162-164
尽管模糊聚类是一种无监督的分类,但目前的FCM类型的算法却要求聚类原形参数的先验知识(原型数目及类型),否则算法就会产生误导,这就限制了在图像分割中的应用。因此需要对聚类数目给出一个判断算法。通过对图像的灰度直方图中加入它的梯度信息,提出了灰度-梯度的二维直方图。该方法能有效地抑制噪声的干扰,更准确地得到聚类数目,使模糊聚类完全无监督化。  相似文献   

17.
基于加权模糊c均值聚类的快速图像自动分割算法   总被引:3,自引:1,他引:3       下载免费PDF全文
图像分割是指将一幅图像分解为若干互不交迭的区域的集合,是图像处理和计算机视觉的基本问题之一。为了提高图像分割的效率,提出了一种基于2维直方图加权的塔形模糊c均值(FCM)聚类图像快速分割算法。该方法先通过构造合理的2维直方图对噪声进行抑制;然后通过塔形分解来缩减聚类样本集;最后利用加权FCM聚类算法进行分类。仿真结果表明,该方法的效率明显优于标准的FCM算法。此外,为确定分割的最优类别数c,还引入了一种基于该快速算法的聚类有效性评价函数——修正划分模糊度,实现了最佳图像分割类别数c的自动确定。基于人造图像和实际图像的测试实验结果表明该方法是有效的。  相似文献   

18.
基于模糊熵和RPCL的彩色图像聚类分割   总被引:2,自引:1,他引:2       下载免费PDF全文
提出了一种基于模糊熵和RPCL(rival penalized competitive learn ing)的彩色图像聚类分割算法。该算法可以自动确定图像的颜色类数目和初始类中心,从而提高了聚类的收敛速度,并且能够解决模糊熵阈值化分割算法所造成的过度分割问题。首先,计算彩色图像各颜色分量的模糊熵,获得分量模糊熵曲线,并根据模糊熵原理确定各分量的分割区域及聚类中心;然后,对各分量的聚类中心进行组合,形成彩色图像可能的聚类中心。但是,组合的聚类中心数目会多于实际的聚类数目,造成过度分割。因此,本文采用RPCL算法,对这些组合的聚类中心颜色进行学习来确定实际的颜色类数目以及聚类中心,并用学习后的聚类中心对原图像进行聚类分割。实验结果表明,该算法能有效地分割彩色图像,无需事先给定聚类数目和初始类中心。  相似文献   

19.
一种改进的模糊聚类图像分割算法研究与仿真   总被引:3,自引:0,他引:3  
针对相似图像分割过程中,输入像素数据在转换空间上存在的不连贯和幅度变化特征差异很小,像素的隶属关系很难准确界定,导致分割阀值设定过程出现较大衰减,分割误差较大的问题,提出一种改进的模糊聚类图像分割算法.分析了传统的模糊C-均值聚类图像分割算法的弊端,对像素模糊划分矩阵和聚类中心进行推导,将迭代过程中像素数据集对聚类隶属的可能性和不确定性关系融入分割目标函数中,依据可能隶属度和不确定隶属度建立改进分割准则函数,同时对像素聚类进行更新,实现图像分割.仿真结果验证了所提算法的有效性,结果表明,改进后的方法在分割检测过程中,图像误差明显减小.  相似文献   

20.
可能性C均值聚类算法(PCM)对于噪声显示了良好的鲁棒性,但是它没有考虑到像素的空间信息,在含有大量噪声的情况下,PCM算法的分割性能会大大降低。基于PCM算法,提出了一种改进的PCM算法,该算法改进了隶属度函数,新的像素点隶属度更新为其邻域隶属度的几何均值。实验结果显示新的算法能够更有效的分割图像,并显示出良好的抗噪能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号