首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fast separation and spatial control of electrons and holes after photogeneration is important in photocatalysis. Ideally, after photogeneration, electrons and holes must be segregated to different parts of the photocatalyst to take part in separate oxidation and reduction reactions. One way to achieve this is by building junctions into the catalyst with built-in chemical potential differences that tend to separate the electron and the hole into two different regions of the catalyst. In this work, we sought to accomplish this by controllably forming junctions between different phases of TiO(2). A synthesis method has been developed to prepare TiO(2)-B core and anatase shell core-shell nanowires. We control the anatase phase surface coverage on the TiO(2)-B core and show that the maximum photocatalytic activity is obtained when the solution containing the reactants can contact both the anatase and TiO(2)-B phases. The photocatalytic activity drops both with bare TiO(2)-B nanowires and with completely anatase covered TiO(2)-B nanowires. In contrast, nanowires partially covered with anatase phase gives the highest photocatalytic activity. The improved photocatalytic activity is attributed to the effective electron-hole separation at the junction between the anatase and TiO(2)-B phases.  相似文献   

2.
Titanium dioxide (TiO2) is a promising material for many emerging applications. Even more promising are the benefits offered by the material when its length scale is reduced to the nanometer range. Nanomaterials usually exhibit unique properties resulting from either the extremely large surface area-to-volume ratio or the quantum confinement effect of energy carriers. In this article we present an overview of recent progress in the synthesis of TiO2 nanomaterials. The topics include synthesis of TiO2 nanoparticles, nanorods, nanowires, nanotubes, and mesoporous/nanoporous materials using different preparation approaches such as sol-gel, sol, hydrothermal, solvothermal, and vapor deposition. The applications of TiO2 nanomaterials are also briefly summarized.  相似文献   

3.
通过简单的水热反应,和后续的退火处理得到锐钛矿/TiO2(B)异质结构纳米线.通过XRD、SEM和TEM对其进行表征.并对锐钛矿/TiO2 (B)进行甲基橙紫外光降解性能测试,探究和讨论了H2O2对其光催化性能的影响,实验表明当加入1.6mL H2O2时对体系光催化促进效果最优,只需要8min分解率达到99%,降解时间只为无H2O2时的1/5.  相似文献   

4.
龚博  李玉平  张彩丽  兰爱东  韩培德 《功能材料》2013,(21):3126-3129,3134
用化学还原法制备了银包覆聚苯乙烯(PS)微球结构,通过垂直沉积法排列出具有密堆积结构的PS-Ag蛋白石模板,然后采用溶胶-凝胶法渗透TiO2,最后焙烧处理除去PS,制备出了规整的核壳结构TiO2/Ag反蛋白石。采用扫描电镜、透射电镜和X射线衍射对该样品进行了分析。结果表明,PS球表面包覆的为纳米尺度的金属Ag;所制备的PS/Ag核壳微球蛋白石经过480℃、12h焙烧处理后获得的核壳TiO2/Ag反蛋白石结构的单胞参数可以通过调节包覆银层的厚度来调变,即改变AgNO3与PS球的质量比获得具有不同银包覆层厚度、不同单胞参数的三维蛋白石和反蛋白石结构。  相似文献   

5.

Herein, titanium dioxide (TiO2)-coated vertically aligned silicon nanowires (SiNWs/TiO2) were fabricated and evaluated for photocatalytic degradation of organic dyes. Aligned SiNWs arrays were prepared by facile metal-assisted chemical-etching process with varying the etching time that was followed by TiO2 nanoparticles coating using sputtering technique. The TiO2 film crystallized in pure anatase phase with an average crystalline size of 50 nm, as was elucidated with X-ray diffraction studies. SEM analysis showed nanowires with varying lengths from 2.5 to 13.5 µm and confirmed the homogenous surface decoration with TiO2. The homogeneous distribution of TiO2 nanoparticles on nanowires was co-evidenced with Energy-Dispersive X-ray spectroscopy (EDX) and Raman spectra analysis. The developed SiNWs/TiO2 was exploited for photocatalytic degradation of methylene blue; the role of hydrogen peroxide was also elucidated. The highest photocatalytic efficiency of 96% was achieved for SiNWs/TiO2 with optimum nanowire length of 3.5 μm. The developed photocatalyst was found to be almost stable even after 190 days (~?5 months) and could be used as reusable and easily removable photocatalysts. The current study highlighted the SiNWs/TiO2/H2O2 system as excellent candidate for water remediation applications.

  相似文献   

6.
Polyaniline (PANI) as a promising conducting polymer has been used to prepare polyaniline/TiO2 (PANI/TiO2) nanocomposite with core-shell structure as photocatalyst. Titanium dioxide (TiO2) nanoparticles with an average crystal size of 21?nm were encapsulated by PANI via the in situ polymerization of aniline on the surface of TiO2 nanoparticles. FT?CIR, UV-Vis-NIR, XRD, SEM and TEM techniques were used to characterize the PANI/TiO2 core-shell nanocomposite. Photocatalytic activity of PANI/TiO2 nanocomposite was investigated under both UV and visible light irradiations and compared with unmodified TiO2 nanoparticles. Results indicated deposition of PANI on the surface of TiO2 nanoparticles which improved the photocatalytic activity of pristine TiO2 nanoparticles.  相似文献   

7.
Micro/nanostructured systems based on metallic oxide (ZnO) with noble metal (Ag) on the surface (Ag/ZnO) are synthesized by solvothermal method from zinc nitrate hexahydrate (Zn(NO3)2·6H2O), zinc acetate dehydrate (Zn(CH3COO)2·2H2O), zinc acetylacetonate hydrate (Zn(C5H7O2)2·xH2O) and silver nitrate (Ag(NO3)) as precursors. In these systems, polyvinylpyrrolidone (PVP) is used as surfactant for controlling particle morphology, size and dispersion. The obtained materials are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), UV–vis diffuse reflectance spectroscopy (DRS), N2 gas adsorption–desorption (BET) and Raman spectroscopy (RS). By XRD results, all major peaks are indexed to the hexagonal wurtzite-type structure of the ZnO and samples with noble metal, extra diffraction peaks are detected which correspond to the face-centered-cubic (fcc) structure of the metallic Ag. Depending on used precursor, different morphologies have been obtained. Mainly, ZnO prims-like rods – NRs (with 0.8 ? aspect ratio ? 3.4) – have been observed. Quasi-spherical particles of metallic Ag (with diameters between 558 ± 111 μm and 22 ± 1 nm) have been detected on the ZnO surface. Photocatalytic results (all samples studied >30% MB degradation) verify the important effect of surfactant and the viability of synthesized Ag/ZnO micro/nanocomposites for environmental applications.  相似文献   

8.
We report the influence of an Al(2)O(3) shell on the photoluminescence emission of ZnO nanowires. At room temperature, the spectrum of the core-shell nanowires shows a strong reduction of the relative intensity of the green defect emission with respect to the near-band-edge emission. At 5?K an increase of the relative intensity of the surface exciton band with respect to the donor-bound exciton emission is observed. Annealing the core-shell nanowires at 500?°C does not increase the green defect luminescence at 5?K. We propose a model explaining the spectral changes.  相似文献   

9.
In this study, a 'two-step' strategy of synthesizing nanoparticles-assembled Ag,S nanotubes with a diameter of less than 100 nm is developed. At first, the silver nanowires with uniform length and diameter were synthesized by polyol reduction method using PVP as a capping agent. Then, the resulting silver nanowires were exposed to the ambient atmosphere of laboratory, gradually sulfidized by sulfur-containing molecules in air, and eventually transformed into nanoparticles-assembled Ag2S nanotubes. The morphologic changes during the sulfidation process from Ag nanowires to Ag2S nanotubes were investigated by using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It is revealed that Ag2S nanoparticles are initially formed on the surface of Ag nanowire by sulfidation, and subsequently linked together into Ag,S nanotube. Quantitative analyses of energy dispersive X-ray spectra (EDS) and high-resolution transmission electron microscopy (HRTEM) show that the as-synthesized products are monoclinic alpha-Ag2S nanotubes. In addition, there is strong evidence that the polyvinylpyrrolidone (PVP) plays an important role as a soft template in the formation of Ag2S nanotubes. A new absorption peak at 573 nm appears in the optical absorption spectra when the Ag2S nanotubes are formed.  相似文献   

10.
Al0.37Ga0.63As nanowires (NWs) were grown in a molecular beam epitaxy system on GaAs(111)B substrates. Micro-photoluminescence measurements and energy dispersive X-ray spectroscopy indicated a core--shell structure and Al composition gradient along the NW axis, producing a potential minimum for carrier confinement. The core--shell structure formed during growth as a consequence of the different Al and Ga adatom diffusion lengths.  相似文献   

11.
《Materials Letters》2006,60(21-22):2723-2727
A core-shell structure TiO2/BaFe12O19 composite nanoparticles that can photodegrade organic pollutants in the dispersion system effectively and can be recycled easily by a magnetic field is reported in this paper. The obtained samples were characterized by energy dispersive X-ray spectroscopy (SEM-EDS), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The TiO2/BaFe12O19 magnetic photocatalyst is composed of two parts: (1) TiO2 shell used for photocatalysis and (2) BaFe12O19 core for separation by the magnetic field. The photocatalytic activity of the as-prepared magnetic photocatalyst increased with increasing the thickness of TiO2 coating layer. On the other hand, the saturation magnetizations of titania-coated BaFe12O19 nanoparticles decreased with increasing thickness of the titania coating, while the coercivity does not show any change after coating.  相似文献   

12.
Ceramic macroporous reticular alumina foams with a pore size of 15, 20 and 25 pores per inch (ppi) were prepared by the Schwartzwalder method and sintered at 1200 °C to preserve a high porosity. TiO2 thick films were supported on the foam surface by a wash coating process, using Degussa P25 as a TiO2 nanopowder source. After annealing at 600 °C, films with an adequate adhesion and with a thickness of 5–10 μm were obtained. An increasing pore size of the supported foams improves the specific photocatalytic activity of the TiO2 coated scaffolds, the flow of solution through the highly active porous foam structure and the better access of light to the active TiO2 surface.  相似文献   

13.
TiO2/WO3 composite nanotubes were synthesized in an anodic aluminum oxide (AAO) template by a sol–gel method. The prepared nanotubes were characterized by transmission electron microscopy, scanning electron microscopy, powder X-ray diffraction, and Brunauer–Emmett–Teller surface area. Using the nanotubes embedded in the AAO templates as catalysts, photocatalytic degradation of methyl orange aqueous solution was carried out under UV light irradiation. The results showed that the TiO2/WO3 composite nanotubes with the thickness about 50 nm could be successfully synthesized by this method. TiO2 showed anatase phase and WO3 displayed monoclinic phase. The composite nanotubes (TiO2/WO3) exhibited higher photocatalytic activity than the pure nanotubes (WO3 or TiO2). The possible reason for improving the photocatalytic activity was also discussed.  相似文献   

14.
乙烯对果蔬的生长有积极的作用,它可以促进果蔬的成熟,使其变得香甜可口。但果蔬成熟后乙烯的存在又可以加速果蔬的熟化程度,使其变得脆弱、易腐烂。因此,清除乙烯将对果蔬保鲜产生积极的影响。本文采用溶胶一凝胶方法制备了TiO2及Ag/TiO2薄膜。利用气相色谱法通过在自制的反应器内进行检测清除乙烯的实验,比较了TiO2薄膜和Ag/TiO2薄膜的光催化清除乙烯性能。结果发现,TiO2薄膜有较好的光催化清除乙烯性能,掺杂适量的Ag后,Ag/TiO2薄膜有更好的清除乙烯性能。本文还用XRD、SEM对TiO2及Ag/TiO2薄膜的形貌、物相结构、颗粒尺寸进行了表征分析并对实验结果进行了讨论。  相似文献   

15.
采用阳极氧化法,在醇(丙三醇、乙二醇)-水-NH4F电解液体系中制备高度有序的TiO2纳米管阵列。采用场发射扫描电子显微镜(SEM)、X射线衍射仪(XRD)对TiO2纳米管阵列的形貌和晶型结构进行表征,讨论了阳极氧化法制备工艺(阳极氧化电压、氧化时间、电解液)对TiO2纳米管的形貌、结构及其甲基橙光催化降解性能的影响;分析了退火温度对TiO2阵列的物相及其光催化性能的影响。研究结果表明,采用高电压、增加氧化时间有利于TiO2纳米管阵列光催化的提高,在其它参数相同的情况下,采用丙三醇作为电解液制备获得的TiO2纳米管阵列较乙二醇体系具有更加优异的光催化性能。  相似文献   

16.
TiO2 nanotubes were fabricated by a hydrothermal method. Silver nanoparticles with diameters around 3–5 nm were loaded onto the surface of TiO2 nanotubes via a deposition approach followed by a photochemical reduction process under ultraviolet irradiation. Transmission electron microscopy (TEM), N2 adsorption measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, UV-vis diffuse reflectance spectroscopy (UV-vis), and fluorescence spectroscopy (FL) were applied to characterize the as-prepared Ag/TiO2 nanotube composites. The photocatalytic activity of the as-prepared materials was investigated by photodegrading of methyl orange. The results showed that silver particles were in zero oxidation state and highly dispersed on the surface of TiO2 nanotubes when the concentration of Ag+ was low. The presence of metallic silver can help the electron-hole separation by attracting photoelectrons. The Ag/TiO2 nanotube composites with a suitable amount of silver showed a further improvement on the photocatalytic activity for degradation of methyl orange in water.  相似文献   

17.
多孔Ag/TiO2的制备及其光催化性研究   总被引:1,自引:1,他引:0  
罗妮  王宁  张昭 《功能材料》2007,38(7):1143-1145,1148
以工业TiOSO4溶液水解得到的多孔偏钛酸为载体,通过光催化还原法制备了多孔Ag/TiO2光催化剂.用XRD、SEM、EDS及低温氮吸附脱附法对样品进行了表征.以光催化氧化降解亚甲基蓝为目标反应,考察了不同制备条件对样品光催化活性的影响.结果表明,制备的Ag/TiO2为负载有非晶态纳米银粒的锐钛矿型TiO2光催化剂,比表面积高达197m2/g,其光催化活性远优于未载银的TiO2.  相似文献   

18.
以钛酸丁酯为钛源,采用水热法合成了高纯度的TiO2(B)纳米线。用X射线衍射(XRD),扫描电镜(SEM),透射电镜(TEM)以及激光拉曼光谱仪(Raman)对其晶体结构、形貌和纯度进行了表征与分析,并对其锂离子电池性能进行了测试。结果表明,通过该方法得到的一维TiO2(B)纳米线纯度达到了93.2%。该材料表现出了优异的电化学性能,在0.2C下首次放电比容量达254.8 mAh/g,且循环性能良好,100次循环后容量损失只有约7.84%。  相似文献   

19.
A reverse microemulsion-mediated hydrothermal route has been employed to synthesize photocatalytic titanium dioxide (TiO2) powders. Nano-crystalline monophasic anatase TiO2 powders were successfully prepared when the microemulsion-derived precursors were hydrothermally treated. The advantage of using this microemulsion mediated hydrothermal route is the significant reduction in reaction time and temperatures as compared with the conventional hydrothermal process. The oil/water emulsion ratio significantly affected the particle sizes of the obtained TiO2 powders. The specific surface area of TiO2 powders was increased with the oil/water ratio, thereby leading to enhanced photocatalytic activity of TiO2 powders. As the hydrothermal temperature was elevated, the morphology of the TiO2 particles changed from a rod-like shape into a polyhedral shape. The variation in microstructures decreased the specific surface area of the TiO2 powders and lowered the photocatalytic activity.  相似文献   

20.
Nanostructured TiO2/gamma-Al2O3 composite membranes with various compositions were prepared by sol-gel method. The structural and textural properties of the composite membranes could be modified by the mixing ratio of boehmite sol and titania sol, and calcination temperature. The existence of alumina in the composite membranes retarded anatase-to-rutile phase transformation, resulting in stabilization of textural properties. Defect-free composite membranes were confirmed by gas permeation test.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号