首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Using very heterogeneous materials in structural parts submitted to cyclic loadings, this paper presents an elasto-plastic micromechanical model. After recalling the homogenisation principle based on a mean field theory, non-linear kinematic and isotropic strain hardening is introduced into the matrix. Validation is made on an Al–3.5%Cu/SiC particle composite, and an Al–Si7Mg/Al2O3 fibre composite is treated as a first application. Damage is introduced into the model using a fibre failure criterion. It is based on the evolution of the volume fraction of broken fibres as a function of the maximum principal stress in the fibre family. The damage law is identified by means of in situ tensile tests performed inside the scanning electronic microscope. The number of broken fibres is determined as a function of the applied load and the number of cycles. The model predicts the fatigue behaviour, the loss of stiffness, the volume fraction of broken fibres for different volume fractions, aspect ratios, distributions of orientation and distributions of strength of the fibres. The effect of the mechanical fatigue properties of the matrix is also studied.  相似文献   

2.
Abstract

In the present study, magnesium composites reinforced with different volume fraction of submicron size Al2O3 particulates were synthesised using powder metallurgy technique incorporating an innovative microwave assisted rapid sintering technique. The sintered materials were subsequently hot extruded for characterisation in terms of microstructural, physical and mechanical properties. Microstructural characterisation results revealed a reasonably uniform distribution of Al2O3 particulates, minimal porosity and good matrix reinforcement interfacial integrity. The average coefficient of thermal expansion (CTE) value for Mg–Al2O3 composites was found to decrease with increasing amount of submicron Al2O3 particulates. Mechanical characterisation of the composites revealed an increase in hardness, elastic modulus, 0·2% YS and ultimate tensile strength (UTS) with the increase in amount of alumina particulates. Ductility exhibited the reverse trend. An attempt is made in the present study to correlate the effect of the presence of submicron alumina and its increasing amount with the microstructural, physical and mechanical properties of magnesium.  相似文献   

3.
Using 80 vol.% of poly methyl methacrylate (PMMA) as a pore-forming agent to obtain interconnected porous bodies, porous Al2O3–(m-ZrO2) bodies were successfully fabricated. The pores were about 200 μm in diameter and were homogeneously dispersed in the Al2O3–25 vol.% (m-ZrO2) matrix. To obtain Al2O3–(m-ZrO2)/bioglass composites, the molten bioglass was infiltrated into porous Al2O3–(m-ZrO2) bodies at 1400°C. The material properties of the Al2O3–(m-ZrO2)/bioglass composites, such as relative density, hardness, compressive strength, fracture toughness and elastic modulus were investigated.  相似文献   

4.
Both theoretical analysis and transmission electron microscopy (TEM) complementary studies have been conducted to evaluate the possible role of subgrain formation as a strengthening mechanism in a nanocomposite consisting of Al2O3 and 5 vol % 0.15 m SiC particles. The theoretical calculation predicted that the residual stresses due to thermal expansion mismatch between Al2O3 and SiC are insufficient to induce the extensive plastic deformation required for subgrain formation upon annealing. This prediction was consistent with TEM observations that the bulk of the material was completely free from subgrains, and that only a low density of dislocations was present in isolated areas. The results suggest, therefore, that microstructure refinement through subgrain formation cannot account for the superior mechanical behaviour of the nanocomposite reported in previous studies.TEM examination of the ground surfaces revealed significant plastic deformation in both single phase Al2O3 and the nanocomposite. Upon annealing at 1300°C for 2 h, dislocation-free subgrains were formed in Al2O3, whereas a high density of tangled dislocations were present in the nanocomposite. These observed differences are consistent with the fact that during annealing, residual stress relaxation is more difficult in the nanocomposite than in Al2O3.  相似文献   

5.
Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters. The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30 vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3 μm. The extruded composites have been evaluated based on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion and a precipitation hardening treatment. For the extrusion step optimized processing parameters have been determined as: (i) extrusion temperature = 500 °C–560 °C; (ii) extrusion rate = 5 mm/s; (iii) extrusion ratio = 10:1.  相似文献   

6.
The AC electrical and optical characterizations of epoxy–alumina (Al2O3) composites have been investigated. Sheets filled with alumina were prepared with different alumina concentrations (0, 2, 5, 8, 10, and 15 wt%). The AC electrical properties were measured by using impedance spectroscopy as a function of applied frequency in range from 50 kHz to 1 MHz and filler concentration. The results obtained showed that the applied frequency and filler concentration was found to influence the AC electrical conductivity and dielectric behavior of the prepared composites. The UV-optical results obtained were analyzed in terms of the absorption formula for non-crystalline materials. The absorption coefficient and the optical energy gap (Eopt) have been obtained from the direct allowed transitions in k-space at room temperature. The tail widths (ΔE) of the localized states in the band gap were evaluated using the Urbach-edges formula. It was found that both (Eopt) and (ΔE) vary with the alumina concentration dispersed in the epoxy matrix. The refractive index (n) for the composites was determined from the collected transmittance and reflectance spectra. The dispersion behavior of the refractive index is discussed in terms of the single oscillator model.  相似文献   

7.
Barium borosilicate glass with composition 30BaO–60B2O3–10SiO2 glass was prepared by melt-quenching technique. Different weight % of crystalline Al2O3 was mixed with the glass powder and sintered at optimum temperature. The changes in the structure and thermal properties of the glass with alumina content were investigated by X-ray powder diffraction, FT-IR spectroscopy and differential thermal analysis. The variations in the coefficient of thermal expansion and dielectric properties with composition were also studied and correlated with the structural changes.  相似文献   

8.
In this study, the formation and characterisation of Aluminium (Al)-based composites by mechanical alloying and hot extrusion were investigated. Initially, the vanadium trialuminide (Al3V) particles with nanosized structure were successfully produced by mechanical alloying and heat treatment. Al3V–Al2O3 reinforcement was synthesised by mechanochemical reduction during milling of V2O5 and Al powder mixture. In order to produce composite powders, reinforcement powders were added to pure Al powders and milled for 5?h. The composite powders were consolidated in an extrusion process. The results showed that nanostructured Al-10?wt-% Al3V and Al-10?wt-% (Al3V–Al2O3) composites have tensile strengths of 209 and 226?MPa, respectively, at room temperature. In addition, mechanical properties did not drop drastically at temperatures of up to 300°C.  相似文献   

9.
The dielectric properties of unreinforced Lanxide Al2O3/Al composites have been investigated over a wide range of temperatures and frequencies. These composites were formed by the directed oxidation of suitably doped aluminium-based alloy melts, with no filler or reinforcing material in the reaction path. As-grown composite materials were good electrical conductors in all directions owing to the presence of an interconnected metallic constituent. As the metallic phases were partially removed (in favour of porosity) by continuing the oxidation reaction to completion, the composites remained electrically conducting parallel to, and became insulating transverse to, the original growth direction of the composite. This anisotropy apparently was caused by different connectivity of the metal phase between the two directions. Thermal treatments at 1600°C in argon resulted in volatilization of the residual metal in the composite, thus further increasing the porosity. As the metal content was decreased, the composites changed from conducting to insulating along the growth direction. When the metallic phase was removed completely, the porous alumina ceramic maintained anisotropic dielectric properties, due to c-axis alignment of the alumina (corundum) phase along the growth direction. The dielectric constants were 8.0 and 6.4, respectively, parallel and perpendicular to the c-axis aligned directions of the porous alumina ceramic. A dielectric relaxation phenomenon was observed in some samples of both as-grown and thermally treated material, and was attributed to an unidentified impurity effect.  相似文献   

10.
11.
Ta2O5, Nb2O5 and TiO2 were used separately as additives to a Li2O·Al2O3·6SiO2 glass-ceramic composition, to act as nucleating dopants and to aid the formation of an interfacial carbide layer (TaC and NbC) between the fibre and matrix in SiC fibre uniaxially reinforced glass-ceramic composites, The composites exhibited high modulus of rupture (>800 MPa) and fracture toughness (K IC > 15 MPam1/2). The interfacial amorphous carbon rich layer and carbide layer were responsible for lowered interfacial shear strength but permitted high composite fracture toughness. The composite with the TiO2 additive in the matrix showed a lower flexural strength (<500MPa) and a smaller K IC (-11 MPam1/2) which resulted from the high interfacial shear strength between the SiC fibre and the matrix due to the formation of the interfacial TiC layer.  相似文献   

12.
《Composites Part B》2000,31(5):383-390
NiAl–Al2O3 functionally gradient composites (FGCs) have been fabricated by reactive hot compaction of Ni and Al powders in which one or both were partially preoxdized. The FGCs consisted of four or five layers with alumina content increasing up to about 35 vol.%. The gradient in the composition was obtained by stacking powder mixtures of desired compositions. It was found that the technique resulted in a gradual transition of the microstructure and microhardness from NiAl to NiAl–35 vol.%Al2O3. In contrast, the NiAl– (NiAl–35 vol.%Al2O3) bilayer compact showed a much steeper microhardness change with pronounced residual stress at the boundary. The FGCs were found to have higher fracture toughness values than the corresponding composites.  相似文献   

13.
Abstract

The mechanical properties of 20 vol.-%SiC whisker reinforced ZrO2?V2O3 composites containing 2 and 6 mol.-% Y2O3 were measured at room temperature and the fracture surface was examined. The results indicate that the mechanical behaviour of the composites is strongly influenced by the Y2O3 content. The magnitude of the enhancement of the toughness in composites containing 2 mol.-% Y2O3 compared with unreinforced ZrO2?Y2O3 matrix is larger than that for the composites containing 6 mol.-% Y2O3. Crack propagation modes were characterised by crack deflection, whisker bridging, and whisker pullout. High resolution electron microscopic observations show that in composites containing 2 mol.-% Y2O3 the whiskers are directly bonded to the matrix. However, in composites containing 6 mol.-% Y2O3 there is always a thick amorphous layer at the interface, indicating that the high Y2O3 content has promoted the formation of interfacial amorphous layers. These interfacial amorphous layers strengthen the interfacial bonding, resulting in a composite with a low fracture toughness.

MST/2043  相似文献   

14.
The sintering behaviour of alumina–Y-TZP composites prepared by slip-casting technique were studied. Slip-cast samples containing varying amounts of Y-TZP ranging up to 90 vol% were prepared and evaluated. Sintering studies were carried out at 1450°C to 1600°C. Sintered samples were characterised where appropriate to determine phases present, grain sizes, bulk density and mechanical properties. Good correlation was obtained between the calculated prepared powder density and experimental results. The sintered bulk density of the composites was observed to increase with increasing Y-TZP content and sintering temperature up to 1550°C. Maximum hardness values (>14 GPa) were obtained for all samples containing <60 vol% Y-TZP and when sintered at 1550°C. It has been found that the additions of up to 50 vol% Y-TZP was effective in suppressing Al2O3 grain growth.  相似文献   

15.
《Advanced Powder Technology》2014,25(4):1362-1368
Mechanically alloyed nanocrystalline Al63Ni37 powder with a metastable structure of NiAl phase was mixed with 20, 30 and 40 vol.% of Al powder. The powder mixtures as well as pure powder of Al63Ni37 alloy were consolidated at 600 °C under the pressure of 7.7 GPa. The bulk materials were characterised by structural investigations (X-ray diffraction, light and scanning electron microscopy, energy dispersive spectroscopy), compression and hardness tests and measurements of density and open porosity. During the consolidation, the metastable NiAl phase transformed into the equilibrium Al3Ni2 intermetallic. The mean crystallite size of the Al3Ni2 intermetallic in the bulk materials is below 40 nm. The microstructure of the composite samples consists of Al3Ni2 intermetallic areas surrounded by lamellae-like Al regions. The hardness of the produced Al3Ni2–Al composites is in the range of 5–6.5 GPa (514–663 HV1), while that of the Al3Ni2 intermetallic is 9.18 GPa (936 HV1). The compressive strength of the composites increases with the decrease of Al content, ranging from 567 MPa to 876 MPa. The plastic elongation of the composites was increasing with the increase of Al content, while the Al3Ni2 intermetallic failed in the elastic region.  相似文献   

16.
Ca–Al–B–Si–O glass/Al2O3 composites were prepared based on the borosilicate glass powders (D50 = 2.84) and Al2O3 ceramic powders (D50 = 3.26), and the sintering, densification, crystallization of samples were investigated. The shrinkage of sample starts to have a sharp increase at 600 °C. The shrinkage of sample starts to have a further rapid increase after the glass softening temperature of about 713 °C. Glass/Al2O3 composites can be sintered at 875 °C/15 min and exhibit better properties of a relative density of 98.4 %, a λ value of 2.89 W/mK, a ε r value of 7.82 and a tan δ value of 5.3 × 10?4. The interface between glass and Al2O3 grains and the interface between anorthite and glass phase depicts a good compatibility according to transmission electron microcopy test. It is the low sintering temperature, high density and good compatibility with Ag electrodes that, guarantee borosilicate glass/Al2O3 composites suitable for low temperature co-fired ceramic materials.  相似文献   

17.
Abstract

The aim of this study is to describe the effect of containing additives on increasing cold crushing strength (CCS) and bulk density (BD) of Al2O3–SiO2–SiC–C monolithic refractories. Two series of carbon containing monolithics were prepared from Iranian chamotte (Samples A) and Chinese bauxite (Samples B), as 65 wt.% in each case together with, 15wt.% SiC-containing material regenerates (crushed sagger), 10 wt.% fine coke (a total of 90% aggregate) and 10 wt.% resole (phenol formaldehyde resin) as a binder. Different types of additives (such as silicon and ferrosilicon metal) are added to a batch of 100 g of mixture and the physical and mechanical properties (such as BD, apparent porosity and CCS) are measured after tempering at 200°C for 2 h and firing at 1100°C and 1400°C for 2h. After low temperature tempering at 200°C, silicon and ferrosilicon contribute to the formation of stronger cross linking in the resulting structure and provides CCS values as high as 65 MPa. After high temperature sintering, at 1400°C, SiC whiskers of nano sized diameter are formed due to the presence of Si and FeSi2 and increases the CCS values of the refractories as high as 3–4 times in sample containing 6wt.% ferrosilicon metal as additive, compared to the material without additive. The temperature of 1100°C is a transient temperature, used in high temperature sintering.  相似文献   

18.
《Composites Part A》2000,31(4):385-390
In-situ processing offers significant advantages over conventional processing from both technical and economic standpoints. Al–TiO2 is one of the interesting systems that has recently been receiving some attention. In this paper, the formation mechanism of Al3Ti and Al2O3 from an Al–TiO2 system is investigated by using thermal analysis, XRD and microstructural characterisation. It is found that the in-situ processing involves three intermediate steps. In addition, TiO and γ-Al2O3 are transitional phases, which form during the reactive process.  相似文献   

19.
The K2O–B2O3SiO2, K2O–B2O3SiO2–2 %Al2O3, K2O–B2O3SiO2–4 %Al2O3 glasses with different Al2O3 content were prepared. Different proportions (50, 55, 60, 65, 70 %) of the three glasses were respectively mixed with alumina ceramic-filler, then the mechanical and dielectric properties were investigated. The results showed K2O–B2O3SiO2–2 %Al2O3 glass/alumina filler (glass:alumina = 60:40) had the excellent comprehensive properties, so further study was continued with part of alumina ceramic-filler replaced by the silica ceramic-filler on this composite. Then the X-ray diffraction analysis revealed that the alumina and silica fillers existed as the crystal phase, and the densification was seriously damaged when the silica content reached to three quarters of the fillers. With the increase of the silica-filler, the composites’ density and dielectric constant exhibited uniform decrease, but thermal expansion coefficient (TEC) uniformly increased. When the glass:alumina:silica was equal to 60:30:10, a best composite property was presented as a bulk density of 2.582 (g cm?1), a dielectric constant of 6.1 and a dielectric loss of 2 × 10?3 at 1 MHz, a flexural strength of 168 MPa, and a TEC of 8.62 × 10?6 °C?1.  相似文献   

20.
α-Al2O3 ceramic particles and Ni2Al3 intermetallic compound reinforced aluminum matrix composites were successfully fabricated via exothermic dispersion (XD) reaction in an Al–Ni2O3 system. Thermodynamic analysis indicated that the reaction between Al and Ni2O3 could occur spontaneously due to its negative Gibbs free energy. The reaction characteristic was discussed by using X-ray diffraction (XRD) method and differential scanning calorimetry (DSC) analysis. The results showed that the reactions of the Al–Ni2O3 system consisted of two steps as following: (1) the Al firstly reacted with Ni2O3 to form the stable α-Al2O3 particles and active Ni atoms; (2) the active Ni atoms further reacted with Al to form Ni2Al3. The values of activation energy of the two step reactions were around 457.3 and 282.4 kJ/mol, respectively. The scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) revealed that the Ni2Al3 blocks were uniformly distributed throughout the matrix, while the α-Al2O3 particles were slightly segregated in the matrix. The strength of the composite is controlled by the strength of Ni2Al3 phase, and the tensile strength and the elongation rate of the composite with 30 vol.% reinforcement volume fraction are 210 MPa and 8%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号