首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A.E. Tonelli 《Polymer》1982,23(5):676-680
Conformational energies are calculated for poly(N-vinyl pyrrolidone) (PVP) chains as a function of stereosequence using semiempirical potential functions appropriate to peptides and n-alkanes. The planar pyrrolidone side groups are permitted to adopt both conformations which result in an eclipsed arrangement of the pyrrolidone NCH2 or N(CO) and the CaHa bonds. Solvent interactions were considered in the manner used to treat other vinyl polymers bearing planar side groups. Dimensions and dipole moments were calculated using the RIS model developed for PVP from the conformational energies considering both the effects of stereosequence and temperature. Dipole moments were measured for three PVP samples with molecular weight ranging from 10 000 to 360 000. The dimensions and dipole moments calculated for atactic PVP chains agree with the dimensions reported in the literature and the dipole moments measured here.  相似文献   

2.
Rheological behavior of poly(vinyl alcohol) (PVA) and poly(N-vinyl pyrrolidone) (PVP) mixtures in aqueous solutions and hydrogel state was investigated. The complex dependence of the viscosity on PVA/PVP mixture composition could be attributed to cumulative effects of electrostatic interactions, hydrogen bonding or association phenomena. Physical hydrogels were prepared by freezing/thawing method and their viscoelastic properties were followed as a function of number of cryogenic cycles and aging time at 37 °C. From swelling experiments, it was observed that the diffusion of water molecules into the hydrogel pores is Fickian (for low number of cryogenic cycles) and it becomes pseudo-Fickian as the sample is submitted to more than 10 freezing/thawing cycles. PVA/PVP hydrogels obtained by physical interactions present a high degree of tailorability and they are suitable candidates for biomedical applications.  相似文献   

3.
In this study, a simple strategy for micropatterning of cells was developed by using ion implantation that does not require any harsh chemicals and complicated processes. Thin poly(vinyl pyrrolidone) (PVP) films spin-coated on a nonbiological polystyrene Petri dishes were implanted with accelerated proton ions through a pattern mask and then developed with water to generate the patterns of the PVP. The results of the ATR-FTIR and XPS analysis revealed that the chemical compositions of the PVP were not significantly changed by ion implantation and thus the intrinsic biocompatibility of the PVP can be preserved. The in vitro cell culture on the patterned PVP showed selective alignment of cells on the PVP regions of the patterns and thus well-defined 100 μm patterns of the cells were obtained. These results revealed that this strategy is biocompatible and simple to use for biomolecular patterning, which can be used in further biological applications.  相似文献   

4.
Summary Poly(N-vinyl pyrrolidone) (PVPr) forms miscible binary blends with poly(hydroxyethyl methacrylate), poly(hydroxypropyl methacrylate) and two styrene/allyl alcohol copolymers, as shown by their glass transition behavior. However, PVPr is immiscible with poly(ethyl methacrylate), poly(n-propyl methacrylate) and polystyrene. The results indicate the importance of hydroxyl groups in achieving miscibility.  相似文献   

5.
Nanoparticls of multifunctional polymers have very promising characteristics that make this type of the polymers have rapidly growing research attentions and innovations due to advantageous high surface area to volume ratio. In this study, poly (Styrene-co-Methacrylic acid) (P)St-co-MAA)) copolymer nanoparticles were synthesized using free radical polymerization method. Copolymerization takes place via a precipitation polymerization technique. Different polymerization factors such as co-monomer concentration and ratio, polymerization temperatures, polymerization time, initiator concentration and solvent composition were studied to obtain the copolymerization conditions that produce the maximum copolymerization conversion yield and the minimum particle size in nanosize range in a very narrow size distribution. The P)St-co-MAA) copolymer nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), and Thermogravimetric analysis (TGA). When the copolymerization occurred at a monomer ratio of MAA: St (90:10) we obtained the smallest particle size of 25 nm. The maximum conversion yield reached to 99.5% within 4 h of polymerization in the case of St: MAA (1:1) comonomer ratio and 10% total monomer ratio using water:ethanol (1:1) mixture as a co-solvent system. The results clearly demonstrated that use of water as a co-solvent is indeed very effective to promote the polymerization to high conversion. The MAA content in copolymer composition was investigated by carboxylic content via titration method and also by FTIR.
Graphical abstract
  相似文献   

6.
The graft copolymerization of N-vinyl pyrrolidone (N-VP) onto cellulose was carried out with a cobalt acetylacetonate complex Co(acac)3 as an initiator under a nitrogen atmosphere at 50 ± 0.1°C. The graft yield percentage (%G) obtained as a function of the concentrations of N-VP and Co(acac)3 and the temperature was used to calculate various other grafting parameters and the grafting rate dependence on the concentrations of monomer, Co(acac)3 and reaction temperature. The energy of activation (ΔEa) for the grafting of N-VP onto cellulose was 22.7 kJ/mol within 40–60°C. The molecular weights of the grafted chains and homopolymers were determined viscometrically with a Ubbelohde-type viscometer. Graft yield (%G) in the presence of various additives such as sodium lauryl sulfate, cetyltrimethylammonium bromide, and methanol was studied, and the results are suitably explained. On the basis of the experimental results, a reaction scheme for graft copolymerization is proposed, and a kinetic rate expression is presented. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 81: 2286–2296, 2001  相似文献   

7.
D.T. Turner  A. Schwartz 《Polymer》1985,26(5):757-762
Previously a wide range of values have been reported for the glass transition temperature, Tg, of poly(N-vinyl pyrrolidone), PVP, and it was suggested that lower values are due to variable uptakes of water caused by the hygroscopic nature of the polymer. Now it has been found that there are large variations in Tg, even in carefully dried specimens of PVP. Other factors found to influence Tg are residual monomer and the molecular weight of PVP. Polymers prepared by bulk polymerization, either by γ-irradiation or by heating with 2-azobisisobutyronitrile, have much lower values of Tg than dried ones prepared containing 30% water. The difference is mainly due to depression of Tg by residual monomer which, in the absence of water during polymerization, fails to react completely because of conversion to a glassy state. An unexplained observation is that even when all residual monomer has been removed, polymers prepared by bulk polymerization still have a lower Tg than would be expected from their molecular weight.  相似文献   

8.
By using either NH2-functionalized linear/4-arm star poly(ethylene oxide) or NH2-TEMPO initiator, the following novel polymer/polypeptide hybrids (macromolecular chimeras) of poly(ethylene oxide), PEO and poly(N-vinyl pyrrolidone), PNVP, were synthesized: PEO-b-(PBLG or PBLL), PEO-b-PBLL-b-PBLG, 4-arm star copolymer (PEO-b-PBLG)4, PNVP-b-PBLG-b-PBLL, where PBLG is poly(γ-benzyl-l-glutamate) and PBLL, poly(tert-butyloxycarbonyl-l-lysine). The amino-groups are used for the ring opening polymerization (ROP) of α-amino acid carboxyanhydrides (NCAs), while TEMPO was employed for the polymerization of NVP. Molecular characterization revealed the high molecular weight and compositional homogeneity of the macromolecular chimeras prepared. The success of the synthesis was based on the recently developed living ROP of NCAs and controlled/living TEMPO polymerization, using high vacuum techniques.  相似文献   

9.
Summary A superswelling poly [N-vinyl pyrrolidone/2-(methacryloyloxyethyl)trimethyl ammonium chloride], poly(NVP/METAC) hydrogels were prepared by free radical polymerization using ethylene glycol dimethacrylate as crosslinker. The hydrogels were characterized by FT-IR spectroscopy and their surface morphology was determined using Scanning Electron Microscope (SEM). The influence of feed composition of both the monomers and crosslinker on equilibrium swelling and dye adsorption properties of the hydrogels were examined. The equilibrium swelling ratio and binding ratio of the hydrogel/dye systems greatly depends on the METAC and crosslinker concentration in the gels. The effects of pH of the medium and initial dye concentration on the adsorption were also studied. The binding ratio of the hydrogel/dye system increases in the following order: OR-II>RO-14>RO-13.  相似文献   

10.
Adhesive behavior in blends of high molecular weight poly(N-vinyl pyrrolidone (PVP) with a short-chain, liquid poly(ethylene glycol) (PEG) has been studied using a 180° peel test as a function of PVP-PEG composition and water vapor sorption. Hydrophilic pressure-sensitive adhesives are keenly needed in various fields of contemporary industry and medicine, and the PVP-PEG blends, pressure-sensitive adhesion has been established to appear within a narrow composition range, in the vicinity of 36 wt% PEG, and it is affected by the blend hydration. Both plasticizers, PEG and water, behave as tackifiers (enhancers of adhesion) in the blends with glassy PVP. However, PEP alone is shown to account for the occurrence of adhesion, and the tackifying effect of PEG is appreciably stronger than that of sorbed water. Blend hydration enhances adhesion for the systems that exhibit an apparently adhesive type of debonding from a standard substrate (at PEG content less than 36 wt%), but the same amounts of sorbed water are also capable of depressign adhesion in the PEG-overloaded blends, where a cohesive mechanism of adhesive joint failure is typical. The PVP-PEG blend with 36% PEG couples both the adhesive and cohesive mechanisms of bond rupture (i.e., the fibrillation of adhesive polymer under debonding force and predominantly adhesive locus of failure). Blend hydration effect on adhesion has been found to be reversible. The micromechanics of adhesive joint failure for PVP-PEG hydrogels involves the fibrillation of adhesive polymer, followed by fibrils stretching and fracturing as their elongation attains 1000-1500%. Peel force to rupture the adhesive bond of PVP-PEG blends increases with increasing size of the tensile deformation zone, increasing cohesive strength of the material, and increasing tensile compliance of the material, obeying the well-known Kaelble equation, derived originally for conventional rubbery pressure-sensitive adhesives. The major deformation mode upon peeling the PVP-PEG adhesive from a standard substrate is extension, and direct correlations have been established between the composition behaviour of peel strength and that of the total work of viscoelastic strain to break the PVP-PEG films under uniaxial drawing. As a result of strong interfacial interaction with the PET backing film, the PVP-PEG adhesive has a heterogeneous two-layer structure, where different layers demonstrate dissimilar adhesive characteristics.  相似文献   

11.
12.
Electroinduced dispersion polymerization of acrylonitrile initiated by Ce(IV) was performed in an electrolytic cell in the presence of poly(acrylic acid) (PAA). Micron‐size polyacrylonitrile (PAN) particles were stabilized with PAA by electrostatic interaction or by a PAA–Ce(III)–PAN ternary complex formation. A PAA–PAN stable polymer was formed in the cathodic compartment, and the reduced initiator was reoxidized in the anode, thus allowing for the continuation of the process. A possible mechanism of polymerization is suggested. © 2002 John Wiley & Sons, Inc. J Appl Polym Sci 84: 723–728, 2002; DOI 10.1002/app.10076  相似文献   

13.
Di Hu 《Polymer》2010,51(26):6346-6354
Poly(N-vinyl pyrrolidone)-block-polystyrene diblock copolymer (PVPy-b-PS) was synthesized via sequential reversible radical-fragmentation transfer polymerization with S-1-phenylethyl O-ethylxanthate as a chain transfer agent. The block copolymer was incorporated into polybenzoxazine to access the nanostructures in the thermosets. The nanostructures in the thermosets were investigated by means of transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). It was found that disordered and/or ordered PS nanophases were formed in the PBa thermosets. It is judged that the formation of nanophases followed the mechanism of reaction-induced microphase separation in terms of the miscibility of the subchains of the diblock copolymer (viz. PVPy and PS) with polybenzoxazine after and before curing reaction.  相似文献   

14.
首次以钴Ⅱ肟氟化硼配合物(CoBF)催化剂、2,2′-偶氮二异丁腈(AIBN)为引发剂,由催化链转移聚合法制备聚对甲基苯乙烯大分子单体(poly(p-Methylstyrene)),考察不同CoBF的用量对相对分子质量的影响。结果表明:随着CoBF用量的增加,聚对甲基苯乙烯大分子单体的相对分子质量逐渐减小。另外,还采用了基于重均聚合度(DPw)的Mayo方程,计算出催化剂表观链转移常数(ct)为365.6。  相似文献   

15.
Porous poly(methacrylic-co-glycidylmethacrylate) (MAA-GM) was prepared by dispersion polymerization using benzoyl peroxide as an initiator and methacrylate terminated phthalate glycol polyester as a steric stabilizer in polar organic medium (chloroform–ethanol mixture). The prepared poly(methacrylic acid) dispersion was crosslinked by glycidylmethacrylate oligomers. The crosslinked copolymer (MAA-GM) was base hydrolyzed using hydroxyl amine, sodium methoxide, and triethyl amine. The metal binding behavior of the prepared polymer was examined by means of atomic absorption spectrophotometer. The thermal stability of the prepared polymers was examined by thermal gravimetric analysis (TGA). © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 73: 1793–1798, 1999  相似文献   

16.
Narrowly distributed nanoparticles of poly (n‐butyl methacrylate‐co‐vinyl pyrrolidone) were prepared through microemulsion polymerization with a nonionic surfactant of Tween‐80 as emulsifier (6 wt % of the latex) and n‐butanol as coemulsifier. The polymerizations were initiated with benzoylperoxide (BPO), potassium persulfate (KPS), KPS/ferric sulfate (FeSO4), and BPO/FeSO4, respectively, where the initiation in the case of BPO/FeSO4 took place mainly at the interphase between the oil phase and the reaction media. Namely, this interfacial‐initiated microemulsion polymerization resulted in larger particles with relatively narrower particle size distribution as well as higher limiting monomer conversion but lower polymerization rate compared with the polymerization initiated with KPS/FeSO4. In this article, the influences of initiation method, monomer ratio, and addition of water‐soluble components on microemulsion polymerization and latex particle size were studied to discuss the mechanism of interfacial‐initiated microemulsion polymerization. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 2334–2340, 2004  相似文献   

17.
Dispersion polymerization of MMA was conducted using poly(styrene-co-methacrylic acid) copolymer as a steric stabilizer in an aqueous methanol medium. Various composition copolymers were easily prepared with a conventional radical polymerization by changing the monomer ratios of styrene to methacrylic acid, and were employed as a steric stabilizer for dispersion polymerization. The copolymers prepared with monomer ratios of 1.25–1.50 were found to be suitable steric stabilizers for dispersion polymerization. A very small amount of copolymer (0.6 wt% based on MMA) could act as a steric stabilizer effectively to obtain monodisperse PMMA particles. The particle size decreased with increasing the solvent polarity from 4 to 0.14 μm.  相似文献   

18.
Photocathodic stripping of a pre-deposited tellurium film on a gold electrode in 0.1 M Na2SO4 electrolyte containing Cd2+ ions and poly(vinyl pyrrolidone) (PVP) was used as a route to the photoelectrosynthesis of CdTe nanoparticles. Thus illumination of a Te-modified gold surface generated Te2− species, which were removed from the surface into the bulk electrolyte containing Cd2+and PVP by vigorous stirring. The reaction of Te2−and Cd2+ produced PVP-protected nanosized CdTe particles dispersed in solution in the size range 20–40 nm. In this approach, PVP played a critical role as a stabilizer to form discrete CdTe particles instead of larger (agglomerated) ones. Electrochemical quartz crystal microgravimetry was used to monitor stripping of Te films during the light illumination and the synthesized CdTe nanoparticles were characterized by scanning electron microscopy, energy dispersive X-ray analyses and laser Raman spectroscopy.  相似文献   

19.
Poly(3,4‐ethylenedioxythiophene) (PEDOT) nanoparticles were prepared via a miniemulsion polymerization process. The chemical oxidative polymerization of 3,4‐ethylenedioxythiophene (EDOT) occurred in the presence of β‐1,3‐glucan with the injection of an aqueous oxidant solution, and the nanodroplets of EDOT were transformed to PEDOT nanoparticles dispersed in the aqueous medium. The aqueous emulsion of PEDOT nanoparticles showed relatively long emulsion stability (> 8 weeks), and the recovered solid nanoparticles were also redispersible in deionized water without deposition. The size and size distribution of PEDOT nanoparticles could be controlled by adjusting the operating conditions of the ultrasonifier before the polymerization process. The building‐up of a shearing force decreases the size of the PEDOT nanoparticles and also causes the occurrence of a multimodal size distribution for the PEDOT nanoparticles. The electrical conductivity of the PEDOT nanoparticles was 0.28–1.20 S cm−1. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
Monodisperse poly(methyl methacrylate) particles were prepared directly by radiation-induced dispersion polymerization in hexane-ethanol media using vinyl terminus polysiloxane (PSI) macromonmer as a polymerizable stabilizer at room temperature. This method takes advantage of the specialties of radiation-induction, which may result in the formation of uniform polymer particles. The gel effect is evident from the polymerization kinetics curves. Vinyl terminus PSI macromonomer acted as not only a comonomer, but also as a stabilizer. The characterization of PMMA particles was carried out by the scanning electron microscope (SEM), FT-IR, 1H-NMR and X-ray photoelectron spectroscope (XPS). XPS results show that the graft PSI macromonomers were anchored on the surface of PMMA particles to provide a steric stabilization to the PMMA particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号