首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a comparative study of two different ZnO porous film morphologies for dye-sensitized solar cell (DSSC) fabrications. Nanoparticulate ZnO was prepared by the doctor-blade technique starting from a paste containing ZnO nanoparticles. Nanoporous ZnO films were grown by a soft template-assisted electrochemical growth technique. The film thicknesses were adjusted at similar roughness of about 300 in order to permit a worthy comparison. The effects on the cell performances of sensitization by dyes belonging to three different families, namely, xanthene (eosin Y) and indoline (D102, D131, D149 and D205) organic dyes as well as a ruthenium polypyridine complex (N719), have been investigated. The mesoporous electrodeposited matrix exhibits significant morphological changes upon the photoanode preparation, especially upon the dye sensitization, that yield to a dramatic change of the inner layer morphology and increase in the layer internal specific surface area. In the case of indoline dyes, better efficiencies were found with the electrodeposited ZnO porous matrixes compared to the nanoparticulate ones, in spite of significantly shorter electron lifetimes measured by impedance spectroscopy. The observation is interpreted in terms of much shorter transfer time in the oxide in the case of the electrodeposited ZnO films. Among the tested dyes, the D149 and D205 indoline organic dyes with a strong acceptor group were found the most efficient with the best cell over 4.6% of overall conversion efficiency.  相似文献   

2.
This paper reports additive-free, reproducible, low-temperature solution-based process for the preparation of crystalline ZnO nanorods by homogeneous precipitation from zinc acetate. Also, ZnO nanorod structured dye sensitized solar cells using ruthenium dye (Z907) have been fabricated and characterized. The formation and growth of zinc oxide nanorods are successfully achieved. We analyzed three different synthesis method using solution phase, autoclave and microwave. The calcination effects on the morphology of ZnO nanorods are also investigated. Analysis of ZnO nanorods shows that calcination at lower temperature is resulted in a nanorod growth. Additive-free, well-aligned ZnO nanorods are obtained with the length of 330–558 nm and diameters of 14–36 nm. The XRD, SEM, and PL spectra have been provided for the characterization of ZnO nanorods. Microwave-assisted ZnO nanostructured dye sensitized solar cell devices yielded a short-circuit photocurrent density of 6.60 mA/cm2, an open-circuit voltage of 600 mV, and a fill factor of 0.59, corresponding to an overall conversion efficiency of 2.35% under standard AM 1.5 sun light.  相似文献   

3.
采用水相共沉积法制备Ag2Se量子点(QDs), 并与染料共敏化制备固态染料敏化太阳能电池(DSSCs)。考察了Ag2Se量子点不同敏化方式(TiO2/N719/QDs, TiO2/QDs/N719)及敏化时间(0~5 h)对DSSCs性能的影响。通过透射电子显微镜(TEM)和紫外-可见光谱图(UV-Vis)对Ag2Se量子点结构及光学性质进行了表征; 采用光调制光电流/电压谱(IMPS/VS)以及交流阻抗谱(EIS)对器件中载流子传输过程进行了研究。TiO2/QDs/N719的电池器件比TiO2/ N719/QDs具有更高的单色光量子转化效率(IPCE)及光电转化效率, 这是由于TiO2/QDs/N719可以吸附更多的量子点和染料。随着Ag2Se量子点敏化时间的延长, 光电转化效率先提高后降低, 最高达到3.97%。Ag2Se量子点在器件中起到了阻挡层作用, 可以促进电子传输, 抑制电子-空穴复合。而随着量子点敏化时间超过2 h, 电子陷入陷阱的几率增加, 导致器件的光伏性能下降。  相似文献   

4.
Park SW  Lee K  Lee DK  Ko MJ  Park NG  Kim K 《Nanotechnology》2011,22(4):045201
We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO(2) layer through selective desorption and adsorption processes. From the selective removal of the only upper part of the first adsorbed dye, double-layered dye-sensitized solar cells have been successfully achieved without any damage to the dye. From the incident photon-to-current conversion efficiency (IPCE) measurement, the multi-layered dye-sensitized solar cell (MDSSC) was found to exhibit an expanded spectral response for the solar spectrum while maintaining the maximum IPCE value of each single-layered cell. The highest photocurrent density, 19.3 mA cm( - 2), was obtained from the MDSSC utilizing an N719/N749 bi-layered mesoporous TiO(2) film. The power conversion efficiency of 9.8% was achieved from the MDSSC, which is higher than that of single N719-or N749-based cells and cocktail-dyed (a mixture of N719 and N749) cells.  相似文献   

5.
Heterostructured ZnO/ZnS core/shell nanowire arrays have been successfully fabricated to serve as photoanode for the dye-sensitized solar cells (DSSCs) by a facile two-step approach, combining hydrothermal deposition and liquid-phase chemical conversion process. The morphology evolution of the ZnS coated on the ZnO nanowires and its effect on the performance of the DSSCs were systematically investigated by varying the reaction time during the chemical conversion process. The results show that the compact ZnS shell can effectively promote the photogenerated electrons transfer from the excited dye molecules to the conduction band of the ZnO, simultaneously suppress the recombination for the injected elelctrons from the dye and the redox electrolyte. As reaction time goes by, the surface of the nanowires becomes coarse because of the newly formed ZnS nanoparticles, which will enhance the dye loading, resulting in increment of the short-circuit current density (J(SC)) . Open-circuit photovoltage decay measurements also show that the electron lifetime (τ(n)) in the ZnO/ZnS core/shell nanostructures can be significantly prolonged because of the lower surface trap density in the ZnO after ZnS coating. For the ZnO/ZnS core/shell nanostructures, the J(SC) and η can reach a maximum of 8.38 mA/cm(2) and 1.92% after 6 h conversion time, corresponding to 12- and 16-fold increments of as-synthesized ZnO, respectively.  相似文献   

6.
The ZnO dye-sensitized solar cells (DSSCs) with different photoelectrodes were studied on the effect of CuO layer as a barrier layer toward power conversion characteristics. The structures of DSSCs based on ZnO as a photoelectrode, Eosin-Y as a dye sensitizer, iodine/iodide solution as an electrolyte and Pt/FTO as a counterelectrode. CuO powder, nanowire prepared by oxidation reaction of copper powder and CuO thin film prepared by evaporation copper thin film, were used as a layer on the top of ZnO layer to form blocking layer. The photocurrent, photovoltage and power conversion efficiency characteristics for DSSCs were measured under illumination of simulated sunlight obtained from a solar simulator with the radiant power of 100 mW/cm2. It was found that ZnO DSSCs with CuO thin film exhibited highest current density of 5.10 mA/cm2 and highest power conversion efficiency of 0.92% than those of CuO powder and nanowire. The enhancement of the power conversion efficiency can be explained in terms of the retardation of the interfacial recombination dynamics of CuO blocking layer.  相似文献   

7.
One-dimensional semiconductor nanostructures grown directly onto transparent conducting oxide substrates with a high internal surface area are most desirable for high-efficiency dye-sensitized solar cells (DSSCs). Herein, we present a multicycle hydrothermal synthesis process to produce vertically aligned, single crystal rutile TiO(2) nanowires with different lengths between 1 and 8 μm for application as the working electrode in DSSCs. Optimum performance was obtained with a TiO(2) nanowire length of 2.0 μm, which may be ascribed to a smaller nanowire diameter with a high internal surface area and better optical transmittance with an increase in the incident light intensity on the N719 dye; as well as a firm connection at the FTO/TiO(2) nanowire interface.  相似文献   

8.
Photoactive, eco-friendly and high molar extinction coefficient, curcumin-derived dyes (BCMoxo and BCtCM) have been explored in ZnO nanoparticles (NPs)-based dye-sensitized solar cells (DSSCs). The boron complex curcumin dyes modified with di-carboxylic anchor groups (BCtCM) provided surface attachment with a strong UV–vis region absorption than the dye molecule without anchor groups (BCMoxo). Photoanodes primed with poly-dispersive ZnO NPs (∼80–50 nm) specifically devised for these dyes and optimized for the critical thickness, sensitization time and concentration using a solvent-free ionic electrolyte so as to get current density as high as 1.66 mA/cm2 under 80 mW/cm2 irradiation. Therefore, a successful conversion of visible light into electricity by using these curcumin-derived dyes (natural derived photoactive molecules) as photosensitizer in DSSCs would be a great interest in future studies for enhancing further conversion efficiencies.  相似文献   

9.
N/TiO2, S/TiO2, and N S/TiO2 nanocrystalline films anode were obtained by doping non-metallic element N and S which could change the LUMO of anode, leading to the easy injection of electron from the excited state of dye molecule to the conduction band of semiconductor, and thus improving the photoelectric conversion efficiency and reducing the impedance of solar cells. The anode films treated by titanium tetrachloride and co-sensitized by P3HT/N719 were also studied. The absorption region of P3HT/N719 covered the entire visible region in the solar cells. The solar cell based on N/TiO2 anode film treated by titanium tetrachloride and P3HT/N719 showed a short-circuit current density of 10.20 mA/cm2, open-circuit voltage of 0.557 V, and photoelectric conversion efficiency of 2.55%.  相似文献   

10.
Zinc oxide (ZnO) nanopowders were synthesized from commercially available micro-sized zinc powders (Aldrich Co., 98%, 10 μm) by a DC thermal plasma process at atmospheric pressure. The micro-sized zinc powders were vaporized in the plasma region, after which the plasma processing equipment was rapidly quenched, resulting in the formation of ZnO nanopowders with a size of less than 300 nm. Two different reaction gases of oxygen and carbon dioxide were used as the oxygen source and each gas flow rate was controlled as a process variable. The obtained ZnO nanopowders were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). All synthesized ZnO nanopowders showed high crystalline wurtzite structures and the differences in their morphologies were strongly dependent on the operating variables. The photocurrent–voltage (JV) curve of the ZnO nanopowders with a dye of ruthenium (II) 535 bis-TBA (N719, Solaronix) in redox electrolyte showed an overall energy conversion efficiency (η) of 2.54%, demonstrating that the application of the mass-producible ZnO nanopowders by thermal plasma processing to DSSC was feasible.  相似文献   

11.
Flower like ZnO nanorods have been prepared by chemical bath deposition method. X-ray diffraction result shows that flower like ZnO nanorods exhibit hexagonal structure. Dye sensitized solar cells have been assembled by using ZnO nanorod film photoelectrode sensitized using natural dye extracted from daucus carota as sensitizer. The flower like ZnO nanorods have been used as photo-anode material to fabricate the dye sensitized solar cell which exhibited an overall light to electricity conversion efficiency of 0.78 % with a fill factor of 0.39, short-circuit current density of 3.70 mA/cm2 and open-circuit voltage of 0.26 V.  相似文献   

12.
Triazoloisoquinoline-based organic dyestuff was synthesized and used in the fabrication of dye-sensitized solar cells (DSSCs). After co-sensitization with ruthenium complex, triazoloisoquinoline-based organic dyestuff overcomes the deficiency of ruthenium dyestuff absorption in the blue part of the visible spectrum. The incident photon-to-electron conversion efficiency (IPCE) of cis-dithiocyanate-N,N′-bis-(4-carboxylate-4-tetrabutyl ammoniumcarboxylate-2,2′-bipyridine)ruthenium(II) (N719) at shorter wavelength regions (~350–500 nm) is 35 %. After addition of triazoloisoquinoline-based dyestuff for co-sensitization, the IPCE at 350–500 nm increased significantly. This can be attributed to the increased photocurrent of the cells, which improves the dye-sensitized photoelectric conversion efficiency. After optimization of the cells, an energy conversion efficiency of 8.83 % was achieved using an 12 + 4 μm TiO2 electrode, under simulated solar illumination (AM 1.5G). As a consequence, this low molecular weight organic dyestuff is a promising candidate as a co-adsorbent and co-sensitizer for highly efficient DSSCs.  相似文献   

13.
Enhanced photovoltaic performances of N719 dye-sensitized solar-cells were achieved by modifying the titanium oxide (TiO2) electrode-sensitized dye interface. Surface of TiO2 thin film electrode was coated with a calcium oxide (CaO) or lithium fluoride (LiF) thin layer, respectively, in a thermal deposition chamber. As compared to a cell using a bare TiO2 nanoparticle (NTP) electrode, the solar energy conversion efficiency (η)? was enhanced by 15.1% and 12.8% for the surface of a NTP electrode coated with CaO and LiF, respectively. Moreover, for the surface of a TiO2 nanotube electrode respectively coated with CaO and LiF, the efficiency was enhanced by 4.8% and 11.6%. This increase in efficiency is attributed to an increase in the adsorption of N719 dye on the CaO or LiF coated TiO2 thin film electrodes, and the formation of a potential barrier by a CaO or LiF interlayer at the TiO2 electrode-sensitized dye interface.  相似文献   

14.
Keita Kakiuchi 《Thin solid films》2008,516(8):2026-2030
Nanocrystalline and mesoporous ZnO films approximately 4 μm in thickness were fabricated through a simple chemical deposition of Zn4CO3(OH)6·H2O in an aqueous solution of zinc nitrate and urea and subsequent pyrolysis at a low temperature of 300 °C. Microscopic observation of the films revealed that they were composed of mesoporous nanosheets accumulating with submicrometer-order spacing between them on conducting glass substrates. Adsorption of N-719 dye onto the ZnO surface, for application to dye-sensitized solar cells, led to dye-loading of 1.1 × 10− 7 mol/cm2 in spite of the relatively small thickness. The resultant ZnO/N-719 photoanode exhibited a short-circuit photocurrent density of 13.8 mA/cm2, which is of the highest level ever reported for ZnO. An overall light-to-electricity conversion efficiency of 3.3% was achieved under 1 sun AM1.5 illumination without any optimization in view of the other cell components.  相似文献   

15.
A. Al-Kahlout 《Thin solid films》2012,520(6):1814-1820
Nanoscale zinc oxide (ZnO) powder with Brunauer-Emmelt-Teller surface area of 43 m2 g− 1 has been synthesized by soft chemistry at low temperature via reaction of zinc acetate dehydrate (Zn(CH3COO)2.2H2O) and sodium hydroxide (NaOH). The influence of the pH value of the sol on the structure and morphology of ZnO powder have been investigated by X-Ray Diffraction, Scanning Electron Microscopy and High Resolution Transmission Electron Microcopy. Their thermal properties have been determined by simultaneous Differential Thermal Analysis and Thermogravimetry coupled to Mass Spectroscopy analysis. The nanoparticles are single crystals with (101) preferred orientation but agglomerated. Their crystallite size can be adjusted from 15 nm to 35 nm by controlling the pH value between 7 and 13. Thick porous crystalline coatings have been obtained by doctor blade coating on conducting SnO2:F glass substrates using pastes prepared by wetting the crystalline powders with polyethylene glycol and water. After sintering at 400 °C and Ruthenium 535 dye sensitization, the coatings have been tested in a three electrode electrochemical cell containing an appropriate electrolyte in the dark and under 450 W Xenon lamp illumination. The influence of the electrolyte iodine concentration, the film thickness and the light intensity on the current density are presented and discussed. Such coatings appeared promising for the realization of dye sensitized solar cells.  相似文献   

16.
Long vertically aligned ZnO nanowire arrays were synthesized using an ultra-fast microwave-assisted hydrothermal process. Using this method, we were able to grow ZnO nanowire arrays at an average growth rate as high as 200?nm?min(-1) for maximum microwave power level. This method does not suffer from the growth stoppage problem at long growth times that, according to our investigations, a normal microwave-assisted hydrothermal method suffers from. Longitudinal growth of the nanowire arrays was investigated as a function of microwave power level and growth time using cross-sectional FESEM images of the grown arrays. Effect of seed layer on the alignment of nanowires was also studied. X-ray diffraction analysis confirmed c-axis orientation and single-phase wurtzite structure of the nanowires. J-V curves of the fabricated ZnO nanowire-based mercurochrome-sensitized solar cells indicated that the short-circuit current density is increased with increasing the length of the nanowire array. According to the UV-vis spectra of the dyes detached from the cells, these increments were mainly attributed to the enlarged internal surface area and therefore dye loading enhancement in the lengthened nanowire arrays.  相似文献   

17.
We investigated the UV photoconductivity characteristics of ZnO nanowire field effect transistors (FETs) irradiated by proton beams. After proton beam irradiation (using a beam energy of 10 MeV and a fluence of 1012 cm− 2), the drain current and carrier density in the ZnO nanowire FETs decreased, and the threshold voltage shifted to the positive gate bias direction due to the creation of interface traps at the SiO2/ZnO nanowire interface by the proton beam. The interface traps produced a higher surface barrier potential and a larger depletion region at the ZnO nanowire surface, affecting the photoconductivity and its decay time. The UV photoconductivity of the proton-irradiated ZnO nanowire FETs was higher and more prolonged than that of the pristine ZnO nanowire FETs. The results extend our understanding of the UV photoconductivity characteristics of ZnO nanowire devices and other materials when irradiated with highly energetic particles.  相似文献   

18.
In this paper, in order to increase the power conversion efficiency we demonstrated the selective growth of "nanoforest" composed of high density, long branched "treelike" multigeneration hierarchical ZnO nanowire photoanodes. The overall light-conversion efficiency of the branched ZnO nanowire DSSCs was almost 5 times higher than the efficiency of DSSCs constructed by upstanding ZnO nanowires. The efficiency increase is due to greatly enhanced surface area for higher dye loading and light harvesting, and also due to reduced charge recombination by providing direct conduction pathways along the crystalline ZnO "nanotree" multi generation branches. We performed a parametric study to determine optimum hierarchical ZnO nanowire photoanodes through the combination of both length-wise growth and branched growth processes. The novel selective hierarchical growth approach represents a low cost, all solution processed hydrothermal method that yields complex hierarchical ZnO nanowire photoanodes by utilizing a simple engineering of seed particles and capping polymer.  相似文献   

19.
This study reports the use of single-crystalline and well-aligned ZnO nanowires as photoanode material for dye-sensitized solar cells. The ZnO nanowires are grown on fluorine-doped tin oxide coated glass substrates without catalysts by thermal evaporation. In spite of low roughness factors of around 25 for the nanowire photoanodes, the fabricated solar cells yield power conversion efficiencies of around 1.3% under AM 1.5G (100 mW cm-2) illumination. Moreover, fill factors of around 0.5 have been achieved and are relatively high when compared with reported values from ZnO nanowire photoanodes. The results reveal the advantage of using single-crystalline nanowires as photoanode material and provide clues for the advancement of nanowire based dye-sensitized solar cells.  相似文献   

20.
ZnO nanorods using various molar concentrations have been synthesized through the chemical bath deposition method. X-ray diffraction result shows that the ZnO nanorods are of hexagonal structure. The morphology of the ZnO nanorods has been examined by scanning electron microscopy. The ZnO nanorods have diameters ranging from 100 to 200 nm and length of 1–3 μm. Dye-sensitized solar cells have been assembled by using ZnO nanorod film photoelectrode sensitized using natural dye extracted from lantana camara as sensitizer. The ZnO nanorods have been used as electrode material to fabricate dye sensitized solar cells which exhibited an efficiency of 0.71 %, the maximum efficiency was obtained for films deposited for 0.07 M concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号