首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We describe fluorescence resonance energy transfer (FRET) studies of film formation by a new type of two-component latex particles. These particles consist of a miscible blend of two components that have a similar composition but very different molecular weights. In our approach, we used sequential seeded emulsion polymerization to generate (in situ) a fraction of oligomer in poly(butyl acrylate-co-methyl methacrylate) P(BA-MMA) seed particles that contained a relatively high molecular weight (high-M) dye-labeled polymer. In this way we could systematically change the molecular weight distribution of polymer inside the particles. We varied the amount and the molecular weight of the oligomers. For latex films cast from these two-component particles, we studied the diffusion rate of the high molecular weight polymer by FRET. These measurements revealed that oligomers promoted diffusion rate during latex film formation (oligoplasticization). We analyzed our diffusion data in terms of the Fujita–Doolittle free-volume model and showed that higher molecular weight oligomers are less efficient as plasticizers. In separate experiments, oligomers with similar molecular weights as those in the two-component particles were introduced via latex blending. We compared oligoplasticization in latex blends films with that in the two-component particles films. Finally, we investigated the rheological behavior of the two-component polymers with compositions adjusted to have a common Tg (2 °C). The higher the molecular weight of the oligomer, the more that had to be added to achieve Tg = 2 °C. All of the oligomers were much shorter than the entanglement length and act as diluents of the entanglements in the high-M polymer. We found that incorporating larger amounts of oligomers with a higher molecular weight resulted in a more pronounced drop in polymer viscosity, associated with the decrease in the entanglement density.  相似文献   

2.
Seungmin Hong 《Polymer》2010,51(14):3006-3013
Small amounts of hydrogen-bonding comonomers such as N-(2-methacryloxyethyl)ethylene urea (MEEU) are often included in latex particle synthesis to promote adhesion of latex films to metals and old surfaces. Little is known about how these monomers affect the latex film formation process. Here we examine the influence of 1-7 wt.% MEEU on butyl acrylate-methyl methacrylate copolymer latex films using fluorescence resonance energy transfer (FRET) measurements, in conjunction with donor- and acceptor-labeled latex particles, to study the rates of polymer diffusion in these films. The presence of MEEU in the copolymer leads to small increases in the polymer glass transition temperature (Tg). It also tends to retard the rate of polymer diffusion. This effect, however, is very sensitive to the humidity of the surrounding atmosphere. It appears that moisture taken up in the film minimizes the influence of MEEU groups on the rate of polymer diffusion.  相似文献   

3.
The diffusion of polymer chains across the interface between distinct latex particles is the final step in latex film maturation. This step drives the transformation of a honeycomb of compacted latex particles bound by weak surface forces into a mechanically robust film. Knowledge of the onset of this diffusion process is limited. We have examined film formation in butyl acrylate-methyl methacrylate copolymer latex containing 1 wt% methacrylic acid. These films dry via a propagating drying front. We were able, via fluorescence resonance energy transfer measurements, to determine the extent of polymer interdiffusion at 23°C as a function of distance from the edge of the drying front for a series of partly wet latex films. Our apparatus allows us to arrest the latex drying process and to extract interdiffusion information from sub-millimeter regions of the drying film. We have tracked the latex drying process and subsequent polymer diffusion as a function of humidity. We find that adjacent to the drying front, increasing humidity initially delays the onset of interdiffusion, but once this initial barrier is overcome increasing humidity increases the rate of diffusion. This transition occurs within 1–2 mm of the drying front.
Mitchell A. WinnikEmail:
  相似文献   

4.
Environmental scanning electron microscopy (ESEM) was employed to study the mechanism of film formation of a carboxylated styrene-butadiene latex copolymer with a glass transition temperature (Tg) of 6 °C. ESEM allows the investigation of wet samples in their native state which is required to study the drying process of latex dispersions. The film forming process was tracked by time-dependent ESEM monitoring of the latex particle morphology and by observing the different stages occurring during the drying process. The focus of our study was an analysis of the three-dimensional (3D) arrangement of the latex particles and a comparison of their appearance on the surface and in the center of the coalesced film. It was found that in the course of film formation, the latex particles arrange in domains which are similar to colloidal crystals. Such domains occur at the stage of dense particle packing. Particle coalescence appears to begin first in these domains before a continuous and homogeneous film is formed which then spreads across the entire substrate. The results suggest that for our carboxylated styrene-butadiene copolymer the current model known for the film forming mechanism which includes four main steps should be complemented by two additional ones, namely the arrangement of particles in crystal-like domains and the beginning of coalescence within these domains. This specific behavior only occurs for monodisperse latices.  相似文献   

5.
We investigated the processes of film formation, polymer diffusion, and crosslinking of latex films at ambient temperature, using low Tg methacrylate latex bearing acetoacetoxy groups, and curing the systems with 1,6-hexanediamine as the crosslinker. The addition of diamine induces floc formation, which modifies the rheological properties of the dispersion and increases its drying rate when coated onto a substrate. The crosslinking reaction between diamine and acetoacetoxy groups occurs at a rapid rate, even in the dispersed state. Although the crosslinking reaction precedes polymer diffusion in the two systems we examined, latex films with relatively good solvent resistance are obtained. Department of Chemistry, Toronto, Ontario, Canada M5S 3H6. Department of Polymer Chemistry, P. O. Box 513, 5600 MB Eindhoven, The Netherlands.  相似文献   

6.
Environmental scanning electron microscopy has been employed to study the drying behaviour of a non-film forming polymethyl methacrylate (PMMA) based latex system. The approach adopted for this study differs slightly when compared to those used previously. Here, by allowing the latex to initially film form, it has been possible to make observations and conclusions regarding the structural development of the specimens under investigation not only in 2D, but also in 3D. The results clearly demonstrate that upon drying, particle packing can yield hexagonal close packed (HCP), square close packed (SCP) and random arrangements, including voids and surface defects that result in the formation of a crystal-like structure. Based on the experimental observations some modifications to the latter stages of the film formation mechanism taking place at temperatures (T) lower than the system glass transition temperature (Tg) have been proposed.  相似文献   

7.
The two existing theories describing drying of latex films or coatings are reconsidered. Subsequently, a novel mathematical drying model is presented, the simulations of which can match and explain experimental drying rate data of two previous investigations with latex films. In contrast to previous model studies, but in agreement with observations, simulations suggest that during the falling rate period of the drying process of a latex film, a porous skin of partly coalesced latex particles is indeed formed, which limits transport of water vapour from the receding air–liquid interphase to the surface of the film. The value of the effective diffusion coefficient of water vapour in the dry and partly coalesced layer (7 × 10−7 m2/s at 19–24 °C), the adjustable parameter of the model for the falling rate period, was found to be independent of initial wet film thickness (89–1322 μm), latex particle size (500–600 nm), initial polymer volume concentration (19–47 vol.%), and molecular weight of latex polymer (not quantified). Simulations also demonstrate that the transition from a constant to a falling drying rate in all cases takes place when the polymer volume concentration of the latex film is equal to that of hexagonal closest packed monodisperse spheres (74 vol.%). Consequently, the model has predictive properties and model inputs are only needed on the specific experimental (or field) conditions of interest. The effects on drying time of variations in relative humidity, wet film thickness, initial polymer volume concentration, and air flow velocity are simulated and analysed using the new model.  相似文献   

8.
We analyze a simple laser reflectivity measurement as a tool to monitor the drying kinetics of transparent polymer films. The reflectivity signal of a laser beam at normal incidence shows oscillations due to interference arising from multiple reflection of the laser light within the drying film. We develop a model to interpret the reflectivity curves in terms of time evolving refractive indices at the top and bottom of the film. We present results of the drying kinetics of transparent alkyd films on a glass substrate of high refractive index. Data shows a clear hallmark indicating the evolution of the crosslinking process. From the reflectivity curves, the time evolution of the refractive indices at the top and bottom is obtained. Assuming a linear-gradient of the refractive index along the depth of the film the average refractive index and consequently the film thickness as a function of time are estimated. Clear features in the time evolution of the refractive indices and thickness, correlate well with qualitative “dust”, “touch” and “fingerprint” drying times. Additionally, we present some preliminary results for water based latex binders, where scattering of light is present, showing that this simple optical technique could be extended for studying latex film formation.  相似文献   

9.
纳米氧化锌对天然胶乳膜干燥及硫化性能影响研究   总被引:1,自引:0,他引:1  
陈静  李颖  梁儒婷  廖双泉  杨磊  许逵 《弹性体》2012,22(5):23-27
采用失重法和溶胀法研究了普通氧化锌和纳米氧化锌活化的天然胶乳膜的干燥动力学,以及干燥过程中胶乳膜交联密度变化.结果表明:天然胶乳厚胶膜在成膜后仍含有大量水分并且去除困难.纳米氧化锌活化胶膜的干燥速率明显高于普通氧化锌胶膜.干燥温度对干燥过程影响显著,干燥时间随干燥温度升高明显降低.随着干燥的进行,2种氧化锌活化的胶乳膜的交联密度均迅速上升,在相同条件下,纳米氧化锌活化胶乳膜交联密度均比普通氧化锌的大.纳米氧化锌对天然胶乳膜的干燥及硫化过程均有促进作用.  相似文献   

10.
Shiling Zhang 《Polymer》2009,50(26):6235-6244
This paper presents a novel and feasible approach for fabrication of morphological gradient surfaces based on the film-formation of nanocomposite polymer latex. In this method, when the polymer latex with relatively low glass transition temperature (Tg) was blended with colloidal silica and then dried at certain temperatures, a morphological evolution with deeper pores from the center to the edge could be directly obtained on polymer surface. Neither careful control of experimental conditions nor any complex processes are needed. The Tg of polymer, the silica content, the solvent and the drying temperature have significant influences on this surface morphology. The film-formation mechanisms at different drying temperatures are also discussed.  相似文献   

11.
An in situ steady-state fluorescence (SSF) technique was applied in order to study the dissolution process of polystyrene (PS) latex films. The effect of the molecular weight M w of the PS on the dissolution rate was investigated. The PS chains were copolymerized with (1-pyrene)methyl methacrylate in order to make use of pyrene (P) as a fluorescent probe to monitor the dissolution process. Seven different films were prepared from P-labeled PS latex dispersions with different molecular weights at room temperature. These films were then annealed at 200 °C for 15 min to complete the film formation process before dissolution. The dissolution of PS films in a toluene (70 %)–cyclohexane (30 %) mixture was monitored in real time by watching the change in the fluorescence intensity of P, I P. We used a model that included both case I and case II diffusion kinetics to interpret the results of the dissolution experiments. The relaxation constants k 0 and the dissolution coefficients D d of the polymer chains were measured. Two different dissolution coefficients were obtained, which were attributed to the small and long polymer chains in the film, considering the high polydispersity of the polymer. It was also found that both of the D d values scaled with M w according to the law D d M ?n .  相似文献   

12.
《Drying Technology》2013,31(9):1843-1854
ABSTRACT

Drying of Poly(vinyl acetate) latex films has wide application in the industries of synthetic fibers, adhesives, coatings, paints, etc. In this investigation, drying of Poly(vinyl acetate) latex film was studied experimentally in a drying tunnel where the air velocity and temperature were controlled. The water evaporation rate was obtained by weighing the latex film during the drying process. The weight loss of latex was measured for different polymer concentrations, film thicknesses, drying areas, temperatures, and air velocities. Results emphasize the important role of these parameters on the relative water transport from the latex film. Increasing air velocity and temperature leads to a significant increase of the weight loss of latex and drying rate. Changing other parameters affects only the rate of weight loss but not the constant drying rate.  相似文献   

13.
DRYING OF LATEX FILMS OF POLY(VINYL ACETATE)   总被引:1,自引:0,他引:1  
Drying of Poly(vinyl acetate) latex films has wide application in the industries of synthetic fibers, adhesives, coatings, paints, etc. In this investigation, drying of Poly(vinyl acetate) latex film was studied experimentally in a drying tunnel where the air velocity and temperature were controlled. The water evaporation rate was obtained by weighing the latex film during the drying process. The weight loss of latex was measured for different polymer concentrations, film thicknesses, drying areas, temperatures, and air velocities. Results emphasize the important role of these parameters on the relative water transport from the latex film. Increasing air velocity and temperature leads to a significant increase of the weight loss of latex and drying rate. Changing other parameters affects only the rate of weight loss but not the constant drying rate.  相似文献   

14.
This study was directed towards determining the factors that define the process of film formation of binder particles in drying aqueous dispersion coatings, based on acrylic polymers. The work described focuses on the infrastructure of drying and ageing thin films of acrylic latices.

In concentrated latices the binder particles are arranged in closely packed structures which cause colored light patterns, the so-called Bragg diffractions. The light waves move within the latex film, where the waves are scattered by the internal structure composed of the spheres and water voids. The pattern of light transmission reveals the internal structure of the latex film. From the change in interference during the drying process of a thin latex film, it is possible to follow the internal movement and deformation of polymer spheres (coalescence process). Further coalescence results in a transparent film. When this film is immersed in water, the remaining internal interfaces between the adhered binder particles swell, thus regenerating the interference pattern. It is expected that during ageing of the film, the proportion of internal interfaces will decrease with time, so that when the aged film is immersed in water the remaining internal interfaces will swell. The resulting interference pattern reveals the decrease in the interfaces between the deformed polymer particles in the dried latex film (auto-adhesion process).  相似文献   


15.
Nanocomposite materials are prepared by drying a mixed colloidal suspension of film‐forming latex and silica. The dispersion state of the silica particles in the dry film controls the properties. We describe, with the help of some examples, how the colloidal stability of the particles in the mixed suspension dictates the final morphology of the dry film. Next, some recent work aimed at controlling the morphology by means of formulation additives is described. Such additives are either surfactants or polymer dispersants (block copolymers) which stabilize the particles (latex and/or silica) in the drying suspension. As a result of the mixing‐and‐drying preparation process, suitable additives are necessarily different from the conventional dispersants used in the formulation of composites prepared by means of melt‐processing. Copyright © 2004 Society of Chemical Industry  相似文献   

16.
聚合物涂膜干燥研究进展   总被引:8,自引:0,他引:8       下载免费PDF全文
评述了人们对于聚合物涂膜形成过程及干燥机理的认识 ,并以涂膜干燥过程的模拟、涂膜缺陷的形成、扩散系数的测定及估算等方面的研究进展为依据 ,讨论了聚合物涂膜干燥过程中需要进一步研究和开发的领域  相似文献   

17.
Designed appropriately, multiphase soft-core/hard-shell latex particles can achieve film formation without the addition of a coalescing aid, while preserving sufficient film hardness. Achieving optimal performance in these materials requires an understanding of how particle morphology affects film formation and stress development in the film. In this study, soft-core/hard-shell latex particles with different shell ratios, core and shell glass transition temperatures (T gs), and particle sizes (63–177 nm) were synthesized using a two-stage emulsion polymerization. The film formation behavior of the composite particles was investigated with cryogenic scanning electron microscopy, atomic force microscopy, and measurements of the minimum film formation temperature (MFFT). Results show that film formation was enhanced for particles with thinner hard shells, smaller particle size, and a smaller difference in T g between the core and shell polymers. For example, the MFFT decreased and the particle deformation increased for particles with thinner shells and smaller particle sizes. Stress development during drying was characterized using a cantilever beam bending technique. A walled cantilever design was used to monitor stress development without the complication of a lateral drying front. The film formation behavior and stress development correlated well with practical paint properties like scrub resistance and gloss.  相似文献   

18.
Ghasem R. Bardajee 《Polymer》2007,48(20):5839-5849
Poly(butyl methacrylate) (PBMA) latex particles have been copolymerized with new fluorescent naphthalimide dyes by miniemulsion polymerization. A new pair of naphthalimide dye monomers was synthesized and copolymerized with butyl methacrylate (BMA) via miniemulsion polymerization, producing approximately 80 nm diameter particles with a narrow size distribution. We were able to prepare polymers with molecular weights in excess of 100,000 g/mol. We also prepared 30,000 g/mol polymers using 1-dodecanethiol as a chain transfer agent. GPC and UV characterization suggest that nearly all of the dye monomers were incorporated into the PBMA polymer chains. The polymerized naphthalimide dyes can be used as a donor-acceptor pair for fluorescence resonance energy transfer (FRET) experiments. The analysis of FRET experiments is complicated by the slightly non-exponential decay of the donor naphthalimide dye. We propose a simple method to deal with this non-exponential behavior in the data analysis. Using our approach, we find that the Förster radius (Ro) between the donor and the acceptor dyes incorporated in the PBMA latex is 3.8 nm. This value is similar to the 3.6 nm Förster radius of a comparable model dye pair in ethyl acetate obtained by a different method.  相似文献   

19.
Fluorescence non-radiative energy transfer experiments were used to study latex blend films composed of high molar mass poly(butyl acrylate-co-methyl methacrylate) (PBA-co-MMA) and much lower molar mass PBA-co-MMA latex of the same chemical composition (50:50 BA:MMA by weight). These blends take advantage of the strong chain length dependence of Tg so that the particles consisting of oligomeric polymer (“low-M”) have a much lower Tg than the corresponding high-M latex. This type of blend represents a useful strategy for obtaining latex coatings with a reduced VOC content. Here we report on experiments which follow the rate at which the low-M polymer mixes via diffusion with the high-M polymer in the latex films. The high-M latex are doubly labeled, containing both donor and acceptor dyes covalently bound to the PBA-co-MMA backbone. Diffusion of the unlabeled low-M polymer into this phase dilutes the dyes, increasing their separation and lowering the quantum efficiency for energy transfer.  相似文献   

20.
We examined the drying behavior of latex both theoretically and experimentally. The theory extends a model for horizontal drying fronts in films with nondeformable particles to incorporate particle deformation by a capillary deformation mechanism. The pressure in the fluid, causing particle compaction, arises from flow through the packed bed to ensure evaporation from all wet areas of the film. We predicted the position of a front of volume fraction unity passing across a semi-infinite film as it dries. Experimentally, the position of the transition from a cloudy film to optical clarity was tracked visually in films comprised of either single component soft latex particles, 20°C above the glass transition, or a blend containing 35% non-deformable hard latex particles. For an initial volume fraction of 0.33, we found excellent agreement between theory and experiment. For an initial volume fraction of 0.05, the agreement is less, although still qualitative. The limitations of the model with respect to the knowledge of physical parameters and initial conditions are discussed. One major implication of the model is that deformation of soft latex particles displaces large amounts of water and, consequently, slows progression of the drying front. Harder particles and shallow initial film profiles produce more pronounced drying fronts. Dept. of Chemical Engineering, Princeton, NJ 08544. Emulsion Polymers Institute and Dept. of Chemical Engineering, Bethelhem, PA 18015.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号