首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An industrial cyclone separator with helical‐roof inlet TsN‐11 has been numerically investigated as to pressure and flow field, pressure drop, fractional efficiency, and particle trajectories inside the cyclone. The turbulence was modeled with Reynolds stresses and large eddy simulations (LES) based on three different subgrid‐scales (SGS). The results with the different setups were compared to experimental data from previous studies. For a proper calculation of the flow field, LES combined with a dynamic SGS model was used for predicting cyclone performance. Individual particles were tracked through the unsteady flow field using the Lagrangian approach. The results of the numerical calculations of the tangential and axial velocity, pressure drop, and cut size are in good agreement with experimental measurements.  相似文献   

2.
Large Eddy Simulations of Mixing Time in a Stirred Tank   总被引:2,自引:0,他引:2  
Large eddy simulations (LES) of mixing process in a stirred tank of 0.476m diameter with a 3-narrow blade hydrofoil CBY impeller were reported. The turbulent flow field and mixing time were calculated using LES with Smagorinsky-Lilly subgrid scale model. The impeller rotation was modeled using the sliding mesh technique. Better agreement of power demand and mixing time was obtained between the experimental and the LES prediction than that by the traditional Reynolds-averaged Navier-Stokes (RANS) approach. The curve of tracer response predicted by LES was in good agreement with the experimental. The results show that LES is a reliable tool to investigate the unsteady and quasi-periodic behavior of the turbulent flow in stirred tanks.  相似文献   

3.
The aim of this work is to investigate the flow instabilities in a baffled, stirred tank generated by a single Rushton turbine by means of large eddy simulation (LES). The sliding mesh method was used for the coupling between the rotating and the stationary frame of references. The calculations were carried out on the "Shengcao-21C" supercomputer using a computational fluid dynamics (CFD) code CFX5. The flow fields predicted by the LES simulation and the simulation using standard κ-ε model were compared to the results from particle image velocimetry (PIV) measurements. It is shown that the CFD simulations using the LES approach and the standard κ-ε model agree well with the PIV measurements. Fluctuations of the radial and axial velocity are predicted at different frequencies by the LES simulation. Velocity fluctuations of high frequencies are seen in the impeller region, while low frequencies velocity fluctuations are observed in the bulk flow. A low frequency velocity fluctuation with a nondimensional frequency of 0.027Hz is predicted by the LES simulation, which agrees with experimental investigations in the literature. Flow circulation patterns predicted by the LES simulation are asymmetric, stochastic and complex, spanning a large portion of the tanks and varying with time, while circulation patterns calculated by the simulation using the standard κ-ε model are symmetric. The results of the present work give better understanding to the flow instabilities in the mechanically agitated tank. However, further analysis of the LES calculated velocity series by means of fast Fourier transform (FFT) and/or spectra analysis are recommended in future work in order to gain more knowledge of the complicated flow phenomena.  相似文献   

4.
双层涡轮桨搅拌反应器内混合时间的大涡模拟   总被引:4,自引:4,他引:0       下载免费PDF全文
施力田  高正明  闵健 《化工学报》2010,61(7):1747-1752
采用计算流体力学(CFD)方法对直径为0.476m双层涡轮桨搅拌反应器内的流动及混合进行了数值模拟,并实验测试了混合过程。利用大涡模拟(LES)及Smagorinsky-Lilly亚格子模型求解湍流流动与示踪剂传递过程,桨叶区域采用滑移网格技术。研究结果表明,大涡模拟得到的示踪剂响应曲线和混合时间与实验结果吻合良好,其预测精度明显优于基于雷诺平均(Reynolds-averaged Navier-Stokes,RANS)的标准k-ε模型的模拟结果。大涡模拟是研究搅拌反应器内非稳态及周期性湍流流动的有效方法。  相似文献   

5.
A detached eddy simulation (DES) and a k-ε-based Reynolds-averaged Navier–Stokes (RANS) calculation on the co-current spray drying chamber is presented. The DES used here is based on the Spalart–Al maras (SA) turbu-lence model, whereas the standard k-ε(SKE) was considered here for comparison purposes. Predictions of the mean axial velocity, temperature and humidity profile have been evaluated and compared with experimental measurements. The effects of the turbulence model on the predictions of the mean axial velocity, temperature and the humidity profile are most noticeable in the (highly anisotropic) spraying region. The findings suggest that DES provide a more accurate prediction (with error less than 5%) of the flow field in a spray drying chamber compared with RANS-based k-εmodels. The DES simulation also confirmed the presence of anisotropic turbulent flow in the spray dryer from the analysis of the velocity component fluctuations and turbulent structure as il us-trated by the Q-criterion.  相似文献   

6.
Computational Fluid Dynamics (CFD) has emerged as a powerful and economical alternative to empiricism in the prediction of aerosol deposition inside the extrathoracic airways (ETA). In RANS-type treatments, a main difficulty is the specification of turbulent fluid fluctuations experienced by the particles, and hence recent research has concentrated on Large Eddy Simulations (LES) in conjunction with Lagrangian Particle Tracking (LPT). While providing close agreement with data, LES/LPT approaches are extremely time consuming, thus the motivation to investigate whether better Lagrangian stochastic models can help RANS-based treatments achieve comparable accuracy. In this study, the RANS-RSM model is used to obtain the mean carrier flow field, whereas turbulent fluid velocities are defined through a stochastic Continuous Random Walk (CRW) model based on the normalized Langevin equation. With extensive validation against flow field and particle deposition data, we demonstrate that RANS, combined with the Langevin CRW provides accuracy which compares very favorably with the more computationally intensive LES approaches.  相似文献   

7.
A large-eddy simulation of gas-liquid flow in a large scale bubble plume is presented. The Euler-Euler approach is used to describe the equations of motion of the two phase flow. The sub-grid scale modeling is based on the Smagorinsky kernel. All the non-drag forces (turbulent dispersion force (only for RANS), virtual mass force, lift force) and drag force are incorporated in the model. Overall, predictions are in good agreement with the experimental data at higher measurement levels but discrepancies are observed in the region near the injector. The axial mean liquid velocity and gas velocity at all the measurement levels exhibit the expected Gaussian profiles and plume spreading. The predictions of gas void fraction, axial gas and liquid velocity are in good agreement with the experimental data except near the injector. Further, the detailed comparison of LES and RANS predictions along with experimental data is presented and discussed.  相似文献   

8.
施乃进  周勇军  鲍苏洋  辛伟  陶兰兰 《化工学报》2017,68(11):4069-4078
分别用体三维速度测量技术(volumetric three-component velocimetry measurements,V3V)和大涡模拟(large eddy simulation,LES)方法对涡轮桨搅拌槽内流场进行研究,发现在完全湍流状态下,涡轮桨搅拌槽内流场的量纲1相平均速度及湍动能分布同Reynolds数无关。用V3V方法实现了Rushton桨叶附近三维流场的重构;探讨尾涡的三维结构及运动规律;分析了叶片后方30°截面轴向、径向和环向速度沿径向分布规律。用V3V实验结果对比了2D-PIV(particle image velocimetry)数据中的尾涡涡对位置和涡量,涡对位置吻合度较好,但2D-PIV中涡量较V3V小37.5%;通过大涡模拟得到完整的尾涡结构,发现在叶片上边缘后侧存在一个和尾涡形成方式相同但不成对出现的涡结构;将大涡模拟结果和2D-PIV及V3V实验结果对比发现,大涡模拟在速度分布及尾涡运动轨迹方面均同实验结果吻合较好,表明大涡模拟能较好地预测涡轮桨搅拌槽内流场。  相似文献   

9.
采用实验和数值模拟的方法研究搅拌管式反应器内的混合过程,其中数值模拟采用大涡模拟的方法研究了反应器内流体的流动场,并就不同转速条件下流体的混合时间,将大涡模拟数值结果分别与标准k-ε模型的计算结果和实验测量值相比较,结果表明:管式搅拌反应器内的流动是非稳态的,具有不对称性。同时,大涡模拟方法可以预报漩涡,特别是桨叶背面的漩涡。与实验测量值相比,大涡模拟对混合时间的计算精度比标准k-ε模型计算精度高约22.8%,证明大涡模拟方法能够有效地模拟搅拌管式反应器内的流动特性。  相似文献   

10.
Large eddy simulations (LES) and Reynolds-averaged Navier-Stokes (RANS) calculations were performed on the flow in a baffled stirred tank, driven by a Rushton turbine at Re=7300. The LES methodology provides detailed flow information as velocity fluctuations are resolved down to the scale of the numerical grid. The Smagorinsky and Voke subgrid-scale models used in the LES were embedded in a numerical lattice-Boltzmann scheme for discretizing the Navier-Stokes equations, and an adaptive force-field technique was used for modeling the geometry. The uniform, cubic computational grid had a size of 2403 grid nodes. The RANS calculations were performed using the computational fluid dynamics code CFX 5.5.1. A transient sliding mesh procedure was applied in combination with the shear-stress-transport (SST) turbulence closure model. The mesh used for the RANS calculation consisted of 241464 nodes and 228096 elements (hexahedrons). Phase-averaged and phase-resolved flow field data, as well as turbulence characteristics, based on the LES and RANS results, are compared both mutually and with a single set of experimental data.  相似文献   

11.
基于离散颗粒(DPM)硬球模型,数值模拟提升管内双组分颗粒气固两相湍流流动行为。应用Vreman的亚格子尺度(SGS)模型模拟气体湍流,建立考虑不同颗粒加速度效应的两颗粒碰撞最小时间计算模型。数值模拟预测了大颗粒和小颗粒的速度和浓度分布。研究结果表明小颗粒具有高的轴向速度和脉动速度,而大颗粒具有低的轴向速度和脉动速度。在床中心区域,小颗粒轴向速度分布出现3个峰值,对于大颗粒轴向速度仅出现两个峰值。在壁面区域大颗粒和小颗粒速度均出现两个峰值。沿床径向方向呈现床中心颗粒浓度低、壁面区域颗粒浓度高的环核流动结果。随着表观气速的增大,颗粒浓度沿径向和床高分布趋于均匀。在床中心区域模拟计算轴向颗粒速度、颗粒浓度和RMS速度与文献实验结果相吻合。在提升管内气体湍流对小颗粒流动具有一定的影响,颗粒间碰撞作用对颗粒相流动的影响大于气相湍流的影响。  相似文献   

12.
A detached eddy simulation (DES), a large‐eddy simulation (LES), and a k‐ε‐based Reynolds averaged Navier‐Stokes (RANS) calculation on the single phase turbulent flow in a fully baffled stirred tank, agitated by a Rushton turbine is presented. The DES used here is based on the Spalart‐Allmaras turbulence model solved on a grid containing about a million control volumes. The standard k‐ε and LES were considered here for comparison purposes. Predictions of the impeller‐angle‐resolved and time‐averaged turbulent flow have been evaluated and compared with data from laser doppler anemometry measurements. The effects of the turbulence model on the predictions of the mean velocity components and the turbulent kinetic energy are most pronounced in the (highly anisotropic) trailing vortex core region, with specifically DES performing well. The LES—that was performed on the same grid as the DES—appears to lack resolution in the boundary layers on the surface of the impeller. The findings suggest that DES provides a more accurate prediction of the features of the turbulent flows in a stirred tank compared with RANS‐based models and at the same time alleviates resolution requirements of LES close to walls. © 2011 American Institute of Chemical Engineers AIChE J, 58: 3224–3241, 2012  相似文献   

13.
This work is aimed at verifying the effect of numerical issues on the RANS-based predictions of single phase stirred tanks. In particular, the effect of grid size and discretization schemes on global parameters, mean velocity, turbulent dissipation rate and homogenization is considered. Although contradictory results have been reported so far on the capability of RANS methods in fluid mixing, the most widely accepted conclusion is that adequate values are generally to be expected for the predicted mean flow quantities, while much less confidence must be put on the calculated turbulent quantities and related phenomena. The results obtained in this work partially revise this last statement and demonstrate that firm conclusions on the limits of RANS simulations can be drawn only after careful verification of numerical uncertainties. The simulation results are discussed and compared to the literature experimental data and to original passive tracer homogenization curves determined with planar laser induced fluorescence.  相似文献   

14.
刘阳  周力行  许春晓  胡璨元 《化工学报》2008,59(10):2485-2489
用基于气体Smagorinsky亚网格应力模型和颗粒动理学模型的双流体大涡模拟(LES)和统一二阶矩两相湍流模型的RANS模拟(USM-RANS),对后台阶气固流动进行了数值模拟。瞬态模拟结果给出各向异性两相湍流结构和颗粒弥散的发展过程。LES经过统计平均得到的颗粒速度及颗粒均方根脉动速度和USM-RANS的模拟结果与实验结果的对照表明,两种模拟结果和实验结果在定量上吻合较好。因此USM模型基本上得到了LES的验证。但是在剪切流区域中,LES得到的颗粒-气体纵向脉动速度关联的峰值大于USM-RANS模拟的结果,这就表明LES和USM-RANS模拟还需要进一步验证和改进。  相似文献   

15.
The heat transfer and flow characteristics of air jet impingement on a curved surface are investigated with computational fluid dynamics(CFD)approach.The first applied model is a one-equation SGS model for large eddy simulation(LES)and the second one is the SST-SAS hybrid RANS-LES.These models are utilized to study the flow physics in impinging process on a curved surface for different jet-to-surface(h/B)distances at two Reynolds numbers namely,2960 and 4740 based on the jet exit velocity(U_e)and the hydraulic diameter(2B).The predictions are compared with the experimental data in the literature and also the results from RANS k-εmodel.Comparisons show that both models can produce relatively good results.However,one-equation model(OEM)produced more accurate results especially at impingement region at lower jet-to-surface distances.In terms of heat transfer,the OEM also predicted better at different jet-to-surface spacings.It is also observed that both models show similar performance at higher h/B ratios.  相似文献   

16.
运用激光诱导荧光(PLIF)技术和大涡模拟方法对T型反应器内的流动特性进行了研究。发现随着Reynolds数(Re)的增大,T型反应器中依次出现分离流(Re<120)、稳定吞噬流(120≤Re<190)、非稳态吞噬流(190≤Re≤300)、非稳态对称流(Re>300)四种流动模式。通过大涡模拟重点考察了非稳态吞噬流的振荡特性。结果表明,在非稳态吞噬流型下,T型反应器内撞击面上会周期性地出现旋涡合并现象,合并的涡向下传递,产生自持振荡。此时撞击区的压力、速度和涡量也发生周期性变化,且变化周期与旋涡合并周期相同,这种振荡是由速度和压力的周期性转换引起的。  相似文献   

17.
Downstream Inflow Turbulent Boundary Conditions (DITurBC) are presented for the Eulerian-Eulerian Large Eddy Simulation (LES) or Reynolds Average Navier-Stokes (RANS) simulation of Diesel Sprays. These boundary conditions initiate the spray physics close to the nozzle exit, which avoids the difficulties linked to the 3D simulation of cavitation, primary break-up and turbulence in the near-nozzle region. An injector model is combined with mass and axial momentum conservation equations to obtain mean profiles of velocity, volume fraction and droplet diameter at a given distance downstream from the nozzle exit. In order to take into account the unsteadiness of the flow, velocity fluctuations are added to the mean profile. These boundary conditions are assessed by comparison with existing data on injection velocity, spray angle and velocity profiles from numerous experiments.  相似文献   

18.
偏心进气式鼓泡反应器内气液流动的大涡模拟   总被引:1,自引:0,他引:1  
采用气液两相流动的欧拉-欧拉大涡模拟,研究了偏心进气式鼓泡塔内气液两相湍流流动。模拟结果表明:气泡流的运动与气含率的分布与试验结果吻合良好,得到了气液两相湍流瞬态结构形成和演变过程;增大气速使涡结构剧烈变化,液体粘度增高限制了旋涡尺度的发展,反应器高径比减小使涡数量减少。  相似文献   

19.
王尊策  张井龙  徐艳  计彦斌 《化工机械》2012,39(2):194-197,254
根据计算流体动力学(CFD)的方法,应用Fluent软件对动态水力旋流器内部油水两相流场进行数值模拟,考察了不同入口流量及转筒转速下旋流器内速度场与油水两相的分布情况。结果表明:动态水力旋流器内切向速度呈双涡结构(准自由涡与准强制涡);轴向速度明显小于切向速度且不存在零速度包络面,油相集中于旋流器轴心形成油核,随着流量及转速的增加,各相速度及中心油核浓度均增加。  相似文献   

20.
Detached eddy simulation (DES) of the liquid-phase turbulent flow in an unbaffled stirred tank agitated by a six-blade, 45°-pitched blade turbine was performed in this study. The tank wall is cylindrical with no baffle and the fluid flow problem was solved in a single reference frame (SRF) rotating with the impeller. For the purpose of comparison, computation based on large eddy simulation (LES) was also carried out. The commercial code Fluent was used for all simulations. Predictions of the phase-averaged turbulent flow quantities and power consumption were conducted. Results obtained by DES were compared with experimental laser Doppler velocimetry (LDV) data from the literature and with the predictions obtained by LES. It was found that numerical results of mean velocity and turbulent kinetic energy profiles as well as the power consumption are in good agreement with the LDV data. When performed on the same computational grid, which is under-resolved in the sense of LES, DES allows better accuracy than LES in that it works better in the boundary layers on the surface of the impeller and the stirred tank walls. It can be concluded that DES has the potential to predict accurately the turbulent flow in stirred tanks and can be used as an effective tool to study the hydrodynamics in stirred tanks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号