共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ren Ziliang Zhang Qieshi Gao Xiangyang Hao Pengyi Cheng Jun 《Multimedia Tools and Applications》2021,80(11):16185-16203
Multimedia Tools and Applications - The multi-modality based human action recognition is an increasing topic. Multi-modality can provide more abundant and complementary information than single... 相似文献
3.
Jing LIU;Wei ZHU;Di LI;Xing HU;Liang SONG 《中国科学:信息科学(英文版)》2025,(1):171-188
People-centric activity recognition is one of the most critical technologies in a wide range of real-world applications,including intelligent transportation systems, healthcare services, and brain-computer interfaces. Large-scale data collection and annotation make the application of machine learning algorithms prohibitively expensive when adapting to new tasks. One way of circumventing this limitation is to train the model in a semi-supervised learning manner that utilizes a percentage of unlabeled data to reduce the labeling burden in prediction tasks. Despite their appeal, these models often assume that labeled and unlabeled data come from similar distributions, which leads to the domain shift problem caused by the presence of distribution gaps. To address these limitations, we propose herein a novel method for people-centric activity recognition,called domain generalization with semi-supervised learning(DGSSL), that effectively enhances the representation learning and domain alignment capabilities of a model. We first design a new autoregressive discriminator for adversarial training between unlabeled and labeled source domains, extracting domain-specific features to reduce the distribution gaps. Second, we introduce two reconstruction tasks to capture the task-specific features to avoid losing information related to representation learning while maintaining task-specific consistency. Finally, benefiting from the collaborative optimization of these two tasks, the model can accurately predict both the domain and category labels of the source domains for the classification task. We conduct extensive experiments on three real-world sensing datasets. The experimental results show that DGSSL surpasses the three state-of-the-art methods with better performance and generalization. 相似文献
4.
Wei Feng Lei Xie Jia Zeng Zhi-Qiang Liu 《Journal of Visual Languages and Computing》2009,20(3):188-195
This paper presents a multimodal system for reliable human identity recognition under variant conditions. Our system fuses the recognition of face and speech with a general probabilistic framework. For face recognition, we propose a new spectral learning algorithm, which considers not only the discriminative relations among the training data but also the generative models for each class. Due to the tedious cost of face labeling in practice, our spectral face learning utilizes a semi-supervised strategy. That is, only a small number of labeled faces are used in our training step, and the labels are optimally propagated to other unlabeled training faces. Besides requiring much less labeled data, our algorithm also enables a natural way to explicitly train an outlier model that approximately represents unauthorized faces. To boost the robustness of our system for human recognition under various environments, our face recognition is further complemented by a speaker identification agent. Specifically, this agent models the statistical variations of fixed-phrase speech using speaker-dependent word hidden Markov models. Experiments on benchmark databases validate the effectiveness of our face recognition and speaker identification agents, and demonstrate that the recognition accuracy can be apparently improved by integrating these two independent biometric sources together. 相似文献
5.
6.
基于"学习者-监督者"的间接学习机制,提出多阶段监督的软迁移学习方法来实现跨网络结构学习,使神经网络对人体行为的建模能力能在不同结构的网络中传递和重用.根据数据特征在不同网络层级上的不同特性,引入两种有效的特征差异度量函数,降低不同网络结构提取的特征之间的差异.在UCF101和HMDB51数据集上进行实验,其结果表明,... 相似文献
7.
Multimedia Tools and Applications - A novel method for human action recognition using a deep learning network with features optimized using particle swarm optimization is proposed. The binary... 相似文献
8.
Gutoski Matheus Lazzaretti André Eugênio Lopes Heitor Silvério 《Neural computing & applications》2021,33(4):1207-1220
Neural Computing and Applications - Human action recognition (HAR) is a topic widely studied in computer vision and pattern recognition. Despite the success of recent models for this issue, most of... 相似文献
9.
Learning a compact and yet discriminative codebook is an important procedure for local feature-based action recognition. A common procedure involves two independent phases: reducing the dimensionality of local features and then performing clustering. Since the two phases are disconnected, dimensionality reduction does not necessarily capture the dimensions that are greatly helpful for codebook creation. What’s more, some dimensionality reduction techniques such as the principal component analysis do not take class separability into account and thus may not help build an effective codebook. In this paper, we propose the weighted adaptive metric learning (WAML) which integrates the two independent phases into a unified optimization framework. This framework enables to select indispensable and crucial dimensions for building a discriminative codebook. The dimensionality reduction phase in the WAML is optimized for class separability and adaptively adjusts the distance metric to improve the separability of data. In addition, the video word weighting is smoothly incorporated into the WAML to accurately generate video words. Experimental results demonstrate that our approach builds a highly discriminative codebook and achieves comparable results to other state-of-the-art approaches. 相似文献
10.
11.
Olivier Chapelle Pannagadatta Shivaswamy Srinivas Vadrevu Kilian Weinberger Ya Zhang Belle Tseng 《Machine Learning》2011,85(1-2):149-173
In this paper we propose a novel algorithm for multi-task learning with boosted decision trees. We learn several different learning tasks with a joint model, explicitly addressing their commonalities through shared parameters and their differences with task-specific ones. This enables implicit data sharing and regularization. Our algorithm is derived using the relationship between ? 1-regularization and boosting. We evaluate our learning method on web-search ranking data sets from several countries. Here, multi-task learning is particularly helpful as data sets from different countries vary largely in size because of the cost of editorial judgments. Further, the proposed method obtains state-of-the-art results on a publicly available multi-task dataset. Our experiments validate that learning various tasks jointly can lead to significant improvements in performance with surprising reliability. 相似文献
12.
13.
Recent years have witnessed a surge of interest in graph-based semi-supervised learning. However, two of the major problems
in graph-based semi-supervised learning are: (1) how to set the hyperparameter in the Gaussian similarity; and (2) how to
make the algorithm scalable. In this article, we introduce a general framework for graphbased learning. First, we propose
a method called linear neighborhood propagation, which can automatically construct the optimal graph. Then we introduce a
novel multilevel scheme to make our algorithm scalable for large data sets. The applications of our algorithm to various real-world
problems are also demonstrated. 相似文献
14.
Fen Xia Author Vitae Yan-wu Yang Author Vitae Author Vitae Fuxin Li Author Vitae Author Vitae Daniel D. Zeng Author Vitae 《Pattern recognition》2009,42(7):1572-1581
In cost-sensitive learning, misclassification costs can vary for different classes. This paper investigates an approach reducing a multi-class cost-sensitive learning to a standard classification task based on the data space expansion technique developed by Abe et al., which coincides with Elkan's reduction with respect to binary classification tasks. Using this proposed reduction approach, a cost-sensitive learning problem can be solved by considering a standard 0/1 loss classification problem on a new distribution determined by the cost matrix. We also propose a new weighting mechanism to solve the reduced standard classification problem, based on a theorem stating that the empirical loss on independently identically distributed samples from the new distribution is essentially the same as the loss on the expanded weighted training set. Experimental results on several synthetic and benchmark datasets show that our weighting approach is more effective than existing representative approaches for cost-sensitive learning. 相似文献
15.
To alleviate the problem of data sparsity inherent to recommender systems, we propose a semi-supervised framework for stream-based recommendations. Our framework uses abundant unlabelled information to improve the quality of recommendations. We extend a state-of-the-art matrix factorization algorithm by the ability to add new dimensions to the matrix at runtime and implement two approaches to semi-supervised learning: co-training and self-learning. We introduce a new evaluation protocol including statistical testing and parameter optimization. We then evaluate our framework on five real-world datasets in a stream setting. On all of the datasets our method achieves statistically significant improvements in the quality of recommendations. 相似文献
16.
17.
18.
Robust self-tuning semi-supervised learning 总被引:3,自引:0,他引:3
We investigate the issue of graph-based semi-supervised learning (SSL). The labeled and unlabeled data points are represented as vertices in an undirected weighted neighborhood graph, with the edge weights encoding the pairwise similarities between data objects in the same neighborhood. The SSL problem can be then formulated as a regularization problem on this graph. In this paper we propose a robust self-tuning graph-based SSL method, which (1) can determine the similarities between pairwise data points automatically; (2) is not sensitive to outliers. Promising experimental results are given for both synthetic and real data sets. 相似文献
19.
Pattern Analysis and Applications - Since the number of instances in the training set is very large, data annotating task consumes plenty of time and energy. Active learning algorithms can... 相似文献
20.
Jesús Martínez del Rincón Maria J. Santofimia Jean-Christophe Nebel 《Pattern recognition letters》2013
This paper presents a novel method that leverages reasoning capabilities in a computer vision system dedicated to human action recognition. The proposed methodology is decomposed into two stages. First, a machine learning based algorithm – known as bag of words – gives a first estimate of action classification from video sequences, by performing an image feature analysis. Those results are afterward passed to a common-sense reasoning system, which analyses, selects and corrects the initial estimation yielded by the machine learning algorithm. This second stage resorts to the knowledge implicit in the rationality that motivates human behaviour. Experiments are performed in realistic conditions, where poor recognition rates by the machine learning techniques are significantly improved by the second stage in which common-sense knowledge and reasoning capabilities have been leveraged. This demonstrates the value of integrating common-sense capabilities into a computer vision pipeline. 相似文献