首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A major disadvantage of conventional meshless methods as compared to finite element method (FEM) is their weak performance in dealing with constraints. To overcome this difficulty, the penalty and Lagrange multiplier methods have been proposed in the literature. In the penalty method, constraints cannot be enforced exactly. On the other hand, the method of Lagrange multiplier leads to an ill-conditioned matrix which is not positive definite. The aim of this paper is to boost the effectiveness of the conventional reproducing kernel particle method (RKPM) in handling those types of constraints which specify the field variable and its gradient(s) conveniently. Insertion of the gradient term(s), along with generalization of the corrected collocation method, provides a breakthrough remedy in dealing with such controversial constraints. This methodology which is based on these concepts is referred to as gradient RKPM (GRKPM). Since one can easily relate to such types of constraints in the context of beam-columns and plates, some pertinent boundary value problems are analyzed. It is seen that GRKPM, not only enforces constraints and boundary conditions conveniently, but also leads to enhanced accuracy and substantial improvement of the convergence rate.  相似文献   

3.
The construction of meshless shape functions is more time-consuming than evaluation of FEM shape functions. Therefore, it is of great importance to take measures to speed up the computation of meshless shape functions. 3-D meshless shape functions and their derivatives are, in the context of reproducing kernel particle method (RKPM), expressed explicitly in terms of kernel function moments for the very first time. This avoids solutions of linear algebraic equations and numerical inversions encountered in standard RKPM implementation, thus speeds up computation of meshless shape functions. A numerical test is performed in a hexahedral domain with the mere purpose of comparing the computation time for shape functions construction between the standard RKPM implementation and the enhanced procedure. Then two 3-D elastostatics numerical examples are presented, which demonstrate that the proposed unique treatment of RKPM shape functions is especially effective.  相似文献   

4.
Overview and applications of the reproducing Kernel Particle methods   总被引:11,自引:1,他引:10  
Summary Multiple-scale Kernel Particle methods are proposed as an alternative and/or enhancement to commonly used numerical methods such as finite element methods. The elimination of a mesh, combined with the properties of window functions, makes a particle method suitable for problems with large deformations, high gradients, and high modal density. The Reproducing Kernel Particle Method (RKPM) utilizes the fundamental notions of the convolution theorem, multiresolution analysis and window functions. The construction of a correction function to scaling functions, wavelets and Smooth Particle Hydrodynamics (SPH) is proposed. Completeness conditions, reproducing conditions and interpolant estimates are also derived. The current application areas of RKPM include structural acoustics, elastic-plastic deformation, computational fluid dynamics and hyperelasticity. The effectiveness of RKPM is extended through a new particle integration method. The Kronecker delta properties of finite element shape functions are incorporated into RKPM to develop a C m kernel particle finite element method. Multiresolution and hp-like adaptivity are illustrated via examples.  相似文献   

5.
A parallel computational implementation of modern meshless system is presented for explicit for 3D bulk forming simulation problems. The system is implemented by reproducing kernel particle method. Aspects of a coarse grain parallel paradigm—domain decompose method—are detailed for a Lagrangian formulation using model partitioning. Integration cells are uniquely assigned on each process element and particles are overlap in boundary zones. Partitioning scheme multilevel recursive spectrum bisection approach is applied. The parallel contact search algorithm is also presented. Explicit message passing interface statements are used for all communication among partitions on different processors. The parallel 3D system is developed and implemented into 3D bulk metal forming problems, and the simulation results demonstrated the efficiency of the developed parallel reproducing kernel particle method system.  相似文献   

6.
A generalized finite difference scheme for solving Poisson equation over multiply connected domain bounded by irregular boundaries at which Neumann boundary conditions are specified, is presented in this paper. The method used to treat the Neumann condition is a six-point gradient approximation method given by Greenspan[6]. The method is generalized to treat all types of grid intersections with the boundary. An efficient computational procedure is devised by eliminating the calculations at the boundary during the interations.The scheme is applied to the problem of forced convection heat transfer in a fully developed laminar flow through seven and nineteen rod-cluster assemblies. Fluid properties are assumed to be uniform. In arriving at the fast converging and efficient method from computational point of view, different iterative techniques, overrelaxation methods and boundary treatments were tried. The results of computations and the computer times are reported in the present paper.  相似文献   

7.
Continuum Sensitivity Analysis (CSA), a method to determine response derivatives with respect to design variables, is derived here for the first time in an arbitrary Lagrangian-Eulerian (ALE) reference frame. CSA differentiates nonlinear governing system of equations to arrive at a linear system of partial differential continuum sensitivity equations (CSEs), here, for fluid-structure interaction (FSI). The CSEs and associated sensitivity boundary conditions are derived here for the first time for FSI, using the boundary velocity formulation, carefully distinguishing design velocity from flow velocity and ALE mesh velocity. Whereas boundary conditions must be differentiated using the material (total) derivative, it is sometimes advantageous to derive the CSEs using local (partial) derivatives. The benefit is that geometric sensitivity, known as design velocity, may not be required in the domain. It is shown here that this advantage is realized when the ALE frame undergoes only the rigid body motion associated with the structure to which it is attached. It is further shown that the advantage is not realized when the ALE mesh deforms due to the flexible motion of the fluid-structure interface. The equations for the transient gust response of a two-dimensional airfoil in compressible flow, flexibly attached to a rigid body mass, are presented as a model problem to illustrate a detailed derivation.  相似文献   

8.

By introducing the dimension splitting method into the reproducing kernel particle method (RKPM), a hybrid reproducing kernel particle method (HRKPM) for solving three-dimensional (3D) wave propagation problems is presented in this paper. Compared with the RKPM of 3D problems, the HRKPM needs only solving a set of two-dimensional (2D) problems in some subdomains, rather than solving a 3D problem in the 3D problem domain. The shape functions of 2D problems are much simpler than those of 3D problems, which results in that the HRKPM can save the CPU time greatly. Four numerical examples are selected to verify the validity and advantages of the proposed method. In addition, the error analysis and convergence of the proposed method are investigated. From the numerical results we can know that the HRKPM has higher computational efficiency than the RKPM and the element-free Galerkin method.

  相似文献   

9.
An interior method for linear and quadratic programming which makes use of higher derivatives of the logarithm barrier function is presented. A convergence analysis is considered too. Our computational experience shows that the method considered performs quite well and seems to be more reliable and robust than the standard method.Scope and purposeLinear programming problems were, for many years, the exclusive domain of the simplex algorithm developed by G.B. Dantzing in 1947. With the introduction of a new algorithm, developed by N.K. Karmarkar in 1984, an alternative computational approach became available for solving such problems. This algorithm established a new class of algorithms: interior point methods for linear programming. In this paper we introduce a barrier method for solving a linear and quadratic programming problem which [9], [10], [11], [12], [13], [14], [15] makes use of higher-order derivatives. We note that a different approach used to construct higher-order interior point methods is presented in [1], [2], [3], [4]. We think that making use of an approximation of higher-order we may obtain a faster convergence and an algorithm more robust than a method obtained using a second-order approximation.  相似文献   

10.
11.
A continuous adjoint formulation for inverse design problems in external aerodynamics and turbomachinery is presented. The advantage of the proposed formulation is that the objective function gradient does not depend upon the variation of field geometrical quantities, such as metrics variations in the case of structured grids. The final expression for the objective function gradient includes only boundary integrals which can readily be calculated in both structured and unstructured grids; this is feasible in design problems where the objective function is either a boundary integral (pressure deviation along the solid walls) or a field integral (the entropy generation over the flow domain). The formulation governs inviscid and viscous flows; it takes into account the streamtube thickness variation terms in quasi-3D cascade designs or rotational terms in rotating blade design problems. The application of the method is illustrated through a number of design problems concerning isolated airfoils, a 3D duct, 2D, quasi-3D and 3D, stationary and rotating turbomachinery blades.  相似文献   

12.
In this paper, we develop domain decomposition spectral method for mixed inhomogeneous boundary value problems of high order differential equations defined on unbounded domains. We introduce an orthogonal family of new generalized Laguerre functions, with the weight function x ?? , ?? being any real number. The corresponding quasi-orthogonal approximation and Gauss-Radau type interpolation are investigated, which play important roles in the related spectral and collocation methods. As examples of applications, we propose the domain decomposition spectral methods for two fourth order problems, and the spectral method with essential imposition of boundary conditions. The spectral accuracy is proved. Numerical results demonstrate the effectiveness of suggested algorithms.  相似文献   

13.
《国际计算机数学杂志》2012,89(1-2):127-132
An expansion procedure using the Chebyshev polynomials is proposed by using El-Gendi method [1], which yields more accurate results than those computed by P. M. Beckett [2] and A. R. Wadia and F. R. Payne [6] as indicated from solving the Falkner-Skan equation, which uses a boundary value technique. This method is accomplished by starting with Chebyshev approximation for the highest-order derivative and generating approximations to the lower-order derivatives through integration of the highest-order derivative.  相似文献   

14.
Partition of unity based finite element methods (PUFEMs) have appealing capabilities for p-adaptivity and local refinement with minimal or even no remeshing of the problem domain. However, PUFEMs suffer from a number of problems that practically limit their application, namely the linear dependence (LD) problem, which leads to a singular global stiffness matrix, and the difficulty with which essential boundary conditions can be imposed due to the lack of the Kronecker delta property. In this paper we develop a new PU-based triangular element using a dual local approximation scheme by treating boundary and interior nodes separately. The present method is free from the LD problem and essential boundary conditions can be applied directly as in the FEM. The formulation uses triangular elements, however the essential idea is readily extendable to other types of meshed or meshless formulation based on a PU approximation. The computational cost of the present method is comparable to other PUFEM elements described in the literature. The proposed method can be simply understood as a PUFEM with composite shape functions possessing the delta property and appropriate compatibility.  相似文献   

15.
Topology optimization methods application for viscous flow problems is currently an active area of research. A general approach to deal with shape and topology optimization design is based on the topological derivative. This relatively new concept represents the first term of the asymptotic expansion of a given shape functional with respect to the small parameter which measures the size of singular domain perturbations, such as holes and inclusions. In previous topological derivative-based formulations for viscous fluid flow problems, the topology is obtained by nucleating and removing holes in the fluid domain which creates numerical difficulties to deal with the boundary conditions for these holes. Thus, we propose a topological derivative formulation for fluid flow channel design based on the concept of traditional topology optimization formulations in which solid or fluid material is distributed at each point of the domain to optimize the cost function subjected to some constraints. By using this idea, the problem of dealing with the hole boundary conditions during the optimization process is solved because the asymptotic expansion is performed with respect to the nucleation of inclusions – which mimic solid or fluid phases – instead of inserting or removing holes in the fluid domain, which allows for working in a fixed computational domain. To evaluate the formulation, an optimization problem which consists in minimizing the energy dissipation in fluid flow channels is implemented. Results from considering Stokes and Navier-Stokes are presented and compared, as well as two- (2D) and three-dimensional (3D) designs. The topologies can be obtained in a few iterations with well defined boundaries.  相似文献   

16.
In this paper, we consider while-program-schemata, as defined, for example, in [1] [2] [3], interpreted over a domain of functions and predicates over the real numbers. We observe that the (real) functions computed by programs of this kind are representable by (non recursive) Algol-like expressions which are, in general, too complicated to be treated with the methods of classical mathematical analysis. As an example of how to extend classical analytical concepts to functions computed by programs, we give a method for constructing in an algorithmic way a program which computes the derivative of the function computed by a given program, if such a derivative exists. A simple example is given.  相似文献   

17.
《国际计算机数学杂志》2012,89(8):1795-1819
In this paper, we introduce a new high-order scheme for boundary points when calculating the derivative of smooth functions by compact scheme. The primitive function reconstruction method of ENO schemes is applied to obtain the conservative form of the compact scheme. Equations for approximating the derivatives around the boundary points 1 and N are determined. For the Neumann (and mixed) boundary conditions, high-order equations are derived to determine the values of the function at the boundary points, 1 and N, before the primitive function reconstruction method is applied. We construct a subroutine that can be used with Dirichlet, Neumann, or mixed boundary conditions. Numerical tests are presented to demonstrate the capabilities of this new scheme, and a comparison to the lower-order boundary scheme shows its advantages.  相似文献   

18.
19.
A continuous adjoint formulation for the computation of the sensitivities of integral functions used in steady-flow, incompressible aerodynamics is presented. Unlike earlier continuous adjoint methods, this paper computes the adjoint to both the mean-flow and turbulence equations by overcoming the frequently made assumption that the variation in turbulent viscosity can be neglected. The development is based on the Spalart-Allmaras turbulence model, using the adjoint to the corresponding differential equation and boundary conditions. The proposed formulation is general and can be used with any other integral function. Here, the continuous adjoint method yielding the sensitivities of the total pressure loss functional for duct flows with respect to the normal displacements of the solid wall nodes is presented. Using three duct flow problems, it is demonstrated that the adjoint to the turbulence equations should be taken into account to compute the sensitivity derivatives of this functional with high accuracy. The so-computed derivatives almost coincide with “reference” sensitivities resulting from the computationally expensive direct differentiation. This is not, however, the case of the sensitivities computed without solving the turbulence adjoint equation, which deviates from the reference values. The role of all newly appearing terms in the adjoint equations, their boundary conditions and the gradient expression is investigated, significant and insignificant terms are identified and a study on the Reynolds number effect is included.  相似文献   

20.
In this paper, a meshfree method based on the moving Kriging interpolation is further developed for free and forced vibration analyses of two-dimensional solids. The shape function and its derivatives are essentially established through the moving Kriging interpolation technique. Following this technique, by possessing the Kronecker delta property the method evidently makes it in a simple form and efficient in imposing the essential boundary conditions. The governing elastodynamic equations are transformed into a standard weak formulation. It is then discretized into a meshfree system of time-dependent equations, which are solved by the standard implicit Newmark time integration scheme. Numerical examples illustrating the applicability and effectiveness of the proposed method are presented and discussed in details. As a consequence, it is found that the method is very efficient and accurate for dynamic analysis compared with those of other conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号