首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Consider the acoustic wave scattering by an impenetrable obstacle in two dimensions. The model is formulated as a boundary value problem for the Helmholtz equation with a transparent boundary condition. Based on a duality argument technique, an a posteriori error estimate is derived for the finite element method with the truncated Dirichlet-to-Neumann boundary operator. The a posteriori error estimate consists of the finite element approximation error and the truncation error of boundary operator which decays exponentially with respect to the truncation parameter. A new adaptive finite element algorithm is proposed for solving the acoustic obstacle scattering problem, where the truncation parameter is determined through the truncation error and the mesh elements for local refinements are marked through the finite element discretization error. Numerical experiments are presented to illustrate the competitive behavior of the proposed adaptive method.  相似文献   

2.
A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting (FDS), and second-order MacCormack time marching. A systematic and consistent means of evaluating the surface and volume integrals of the control volume is described. Parallel implementation is done using the message-passing programming model. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. For the first time, a finite volume method with Roe FDS was used for LES of turbulent flow in a square duct, and the effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe FDS adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3–5% of the standard Roe FDS dissipation is needed.  相似文献   

3.
In this paper, we study a new approach in a posteriori error estimation, in which the numerical error of finite element approximations is estimated in terms of quantities of interest rather than the classical energy norm. These so-called quantities of interest are characterized by linear functionals on the space of functions to where the solution belongs. We present here the theory with respect to a class of elliptic boundary-value problems, and in particular, show how to obtain accurate estimates as well as upper and lower bounds on the error. We also study the new concept of goal-oriented adaptivity, which embodies mesh adaptation procedures designed to control error in specific quantities. Numerical experiments confirm that such procedures greatly accelerate the attainment of local features of the solution to preset accuracies as compared to traditional adaptive schemes based on energy norm error estimates.  相似文献   

4.
Summary  The paper discusses error estimation and adaptive finite element procedures for elasto-static and dynamic problems based on superconvergent patch recovery (SPR) techniques. The SPR is a postprocessing procedure to obtain improved finite element solutions by the least squares fitting of superconvergent stresses at certain sampling points in local patches. An enhancement of the original SPR by accounting for the equilibirum equations and boundary conditions is proposed. This enhancement improves the quality of postprocessed solutions considerably and thus provides an even more effective error estimate. The patch configuration of SPR can be either the union of elements surrounding a vertex node, thenode patch, or, the union of elements surrounding an element, theelement patch. It is shown that these two choices give normally comparable quality of postprocessed solutions. The paper is also concerned with the application of SPR techniques to a wide range of problems. The plate bending problem posted in mixed form where force and displacement variables are simultaneously used as unknowns is considered. For eigenvalue problems, a procedure of improving eigenpairs and error estimation of the eigenfrequency is presented. A postprocessed type of error estimate and an adaptive procedure for the semidiscrete finite element method are discussed. It is shown that the procedure is able to update the spatial mesh and the time step size so that both spatial and time discretization errors are controlled within specified tolerances. A discontinuous Galerkin method for solving structural dynamics is also presented.  相似文献   

5.
An adaptive local postprocessing finite element method for the Navier-Stokes equations is presented in this paper. We firstly solve the problem on a relative coarse grid to get a rough approximation. Then, we correct the rough approximation by solving a series of approximate local residual equations defined on some local fine grids, which can be implemented in parallel. In addition, we also propose a reliable local a posteriori error estimator and construct an adaptive algorithm based on the corresponding a posterior error estimate. Finally, some numerical examples are presented to verify the algorithm.  相似文献   

6.
In this paper we present an a posteriori error analysis for elliptic homogenization problems discretized by the finite element heterogeneous multiscale method. Unlike standard finite element methods, our discretization scheme relies on macro- and microfinite elements. The desired macroscopic solution is obtained by a suitable averaging procedure based on microscopic data. As the macroscopic data (such as the macroscopic diffusion tensor) are not available beforehand, appropriate error indicators have to be defined for designing adaptive methods. We show that such indicators based only on the available macro- and microsolutions (used to compute the actual macrosolution) can be defined, allowing for a macroscopic mesh refinement strategy which is both reliable and efficient. The corresponding a posteriori estimates for the upper and lower bound are derived in the energy norm. In the case of a uniformly oscillating tensor, we recover the standard residual-based a posteriori error estimate for the finite element method applied to the homogenized problem. Numerical experiments confirm the efficiency and reliability of the adaptive multiscale method.  相似文献   

7.
This paper presents a novel reduced-basis method for analyzing problems of linear elasticity in a systematical, rapid and reliable fashion for solutions with both upper and lower bounds to the exact solution in the form of energy norm or compliance output. The lower bound of the solution output is obtained form the well-known reduced-basis method based on the Galerkin projection used in the finite element method, which is termed as GP_RBM. For the upper bound, a new reduced-basis approach is developed by the combination of the reduced-basis method and a smoothed Galerkin projection used in the linearly conforming point interpolation method, and it is thus termed as SGP_RBM. To examine the present SGP_RBM, we first conduct a theoretical study on the very important upper bound property. Reduced-basis models for both GP_RBM and SGP_RBM are constructed with the aid of an asymptotic error estimation and greedy adaptive procedure. The GP_RBM and the newly proposed SGP_RBM are applied to analyze a cantilever beam with an oblique crack to verify the proposed RBM technique in terms of accuracy, convergence, bound properties and computational savings. Both theoretical analysis and numerical results have demonstrated that the present method is a very efficient method for real-time solutions providing exact output bounds.  相似文献   

8.
We propose an implicit Newmark method for the time integration of the pressure–stress formulation of a fluid–structure interaction problem. The space Galerkin discretization is based on the Arnold–Falk–Winther mixed finite element method with weak symmetry in the solid and the usual Lagrange finite element method in the acoustic medium. We prove that the resulting fully discrete scheme is well-posed and uniformly stable with respect to the discretization parameters and Poisson ratio, and we provide asymptotic error estimates. Finally, we present numerical tests to confirm the asymptotic error estimates predicted by the theory.  相似文献   

9.
We consider the numerical solution, via the mixed finite element method, of a non-linear elliptic partial differential equation in divergence form with Dirichlet boundary conditions. Besides the temperature u and the flux σ, we introduce ∇u as a further unknown, which yields a variational formulation with a twofold saddle point structure. We derive a reliable a posteriori error estimate that depends on the solution of a local linear boundary value problem, which does not need any equilibrium property for its solvability. In addition, for specific finite element subspaces of Raviart–Thomas type we are able to provide a fully explicit a posteriori error estimate that does not require the solution of the local problems. Our approach does not need the exact finite element solution, but any reasonable approximation of it, such as, for instance, the one obtained with a fully discrete Galerkin scheme. In particular, we suggest a scheme that uses quadrature formulas to evaluate all the linear and semi-linear forms involved. Finally, several numerical results illustrate the suitability of the explicit error estimator for the adaptive computation of the corresponding discrete solutions.  相似文献   

10.
In this paper, we study the adaptive finite element approximation for a constrained optimal control problem with both pointwise and integral control constraints. We first obtain the explicit solutions for the variational inequalities both in the continuous and discrete cases. Then a priori error estimates are established, and furthermore equivalent a posteriori error estimators are derived for both the state and the control approximation, which can be used to guide the mesh refinement for an adaptive multi-mesh finite element scheme. The a posteriori error estimators are implemented and tested with promising numerical results.  相似文献   

11.
Galerkin finite element solutions of the energy equation, like their central difference counterparts, sometimes display non-physical spatial oscillations at high Peclet number. This work compares the behaviour of closed-form solutions of the steady-state one-dimensional energy equation produced by quadratic finite elements, linear finite elements, central differencing and upwind differencing. Examples with different boundary conditions and source distributions are examined to determine the dependence of oscillation amplitudes on these factors. Finally, a two-dimensional numerical experiment is used to show how the qualitative results of the analysis can be extrapolated to more realistic flows. The paper concludes that Galerkin finite element methods can lead to oscillatory behaviour, but the solutions are generally more robust in this respect than the corresponding central difference solutions. For both constant and discontinuous sources in one dimension, boundary conditions can be chosen to eliminate any oscillation. This is in contrast with the central difference method where the solution is always oscillatory if the source is discontinuous. In this connection, the most suitable downstream boundary conditions are (natural) temperature-gradient conditions, which cannot impose spuriously high temperature variations at outlet. In some real flows, where such boundary conditions are not appropriate, large steamwise temperature gradients occur naturally. In these cases it is likely that local mesh refinement would have to be used if oscillations are to be avoided.  相似文献   

12.
In an earlier work of us, a new mixed finite element scheme was developed for the Boussinesq model describing natural convection. Our methodology consisted of a fixed-point strategy for the variational problem that resulted after introducing a modified pseudostress tensor and the normal component of the temperature gradient as auxiliary unknowns in the corresponding Navier-Stokes and advection-diffusion equations defining the model, respectively, along with the incorporation of parameterized redundant Galerkin terms. The well-posedness of both the continuous and discrete settings, the convergence of the associated Galerkin scheme, as well as a priori error estimates of optimal order were stated there. In this work we complement the numerical analysis of our aforementioned augmented mixed-primal method by carrying out a corresponding a posteriori error estimation in two and three dimensions. Standard arguments relying on duality techniques, and suitable Helmholtz decompositions are used to derive a global error indicator and to show its reliability. A globally efficiency property with respect to the natural norm is further proved via usual localization techniques of bubble functions. Finally, an adaptive algorithm based on a reliable, fully local and computable a posteriori error estimator induced by the aforementioned one is proposed, and its performance and effectiveness are illustrated through a few numerical examples in two dimensions.  相似文献   

13.
Direct numerical simulations (DNS) of incompressible turbulent channel flows at Reτ = 180 and 395 (i.e., Reynolds number, based on the friction velocity and channel half-width) were performed using a stabilized finite element method (FEM). These simulations have been motivated by the fact that the use of stabilized finite element methods for DNS and LES is fairly recent and thus the question of how accurately these methods capture the wide range of scales in a turbulent flow remains open. To help address this question, we present converged results of turbulent channel flows under statistical equilibrium in terms of mean velocity, mean shear stresses, root mean square velocity fluctuations, autocorrelation coefficients, one-dimensional energy spectra and balances of the transport equation for turbulent kinetic energy. These results are consistent with previously published DNS results based on a pseudo-spectral method, thereby demonstrating the accuracy of the stabilized FEM for turbulence simulations.  相似文献   

14.
Following the theme of our previous work on least-squares finite elements [10,28], we describe an adaptive remeshing scheme using local residuals as the error indicator. This choice of indicator is natural (and exact at the element level!) in the norm associated with the corresponding least-squares statement. The remeshing strategy applied here involves mesh enrichment by point insertion in a Delaunay scheme. Several refined grids and error plots are included for a representative model elliptic boundary-value problem.  相似文献   

15.
Modeling of elastic thin-walled beams, plates and shells as ID- and 2D-boundary value problems is valid in undisturbed subdomains. Disturbances near supports and free edges, in the vicinity of concentrated loads and at thickness jumps cannot be described in a sufficient way by 1D- and 2D-BVPs. In these disturbed subdomains dimensional (d)-adaptivity and model (m)-adaptivity have to be performed coupled with h- and/or p-adaptivity using hierarchically expanded test spaces in order to guarantee reliable and efficient overall results. The expansion strategy is applied for enhancing the spatial dimension and the model which is more efficient and evident for engineers than the reduction method.

Using local residual error estimators of the primal problem in the energy norm by solving Dirichlet-problems on element patches, an efficient integrated adaptive calculation of the discretization—and the dimensional error is possible and reasonable, demonstrated by examples.

We also present an error estimator of the dual problem, namely a posterior equilibrium method (PEM) for calculation of the interface tractions on local patches with Neumann boundary conditions, using orthogonality conditions. These tractions are equilibrated with respect to the global equilibrium condition of the stress resultants. An upper bound error estimator based on differences between the new tractions and the discontinuous tractions calculated from the stresses of the current finite element solution. The introduction of new element boundary tractions yields a method which can be regarded as a stepwise hybrid displacement method or as Trefftz method for local Neumann problems of element patches.

An important advantage of PEM is the coupled computation of local discretization, dimensional- and model errors by an additive split.  相似文献   


16.
This paper describes a topology design method for simple two-dimensional flow problems. We consider steady, incompressible laminar viscous flows at low-to-moderate Reynolds numbers. This makes the flow problem nonlinear and hence a nontrivial extension of the work of Borrvall and Petersson (2003).Further, the inclusion of inertia effects significantly alters the physics, enabling solutions of new classes of optimization problems, such as velocity-driven switches, that are not addressed by the earlier method. Specifically, we determine optimal layouts of channel flows that extremize a cost function which measures either some local aspect of the velocity field or a global quantity, such as the rate of energy dissipation. We use the finite element method to model the flow, and we solve the optimization problem with a gradient-based math-programming algorithm that is driven by analytical sensitivities. Our target application is optimal layout design of channels in fluid network systems. Using concepts borrowed from topology optimization of compliant mechanisms in solid mechanics, we introduce a method for the synthesis of fluidic components, such as switches, diodes, etc.  相似文献   

17.
《Computers & Structures》2001,79(22-25):2039-2052
The paper presents postprocessing techniques based on locally improved finite element (FE) solutions of the basic field variables. This opens up the possibility to control both “strain energy” terms and “kinetic energy” terms in the governing equations. The proposed postprocessing technique on field variables is essentially a least square fit of the prime variables (displacements) at superconvergent points. Its performance is compared with other well-known techniques, showing a good performance. A h-adaptive FE strategy for acoustic problems is presented where, for adaptive mesh generation and remeshing the commercial software package i-deas has been applied and for the FE analysis the commercial software package sysnoise. The paper also presents an adaptive h-version FE approach to control the discretisation error in free vibration analysis. The postprocessing technique used here is a mix of local and global updating methods. Rapid convergence of the preconditioned conjugate gradient method is enhanced by choosing the initial trial eigenmodes as the superconvergent patch recovery technique for displacements improved FE eigenmodes. Numerical examples show nice properties of the final local and global updated solution as a basis for an error estimator and the error indicator in an adaptive process.  相似文献   

18.
We study in this paper a posteriori error estimates for H 1-conforming numerical approximations of diffusion problems with a diffusion coefficient piecewise constant on the mesh cells but arbitrarily discontinuous across the interfaces between the cells. Our estimates give a global upper bound on the error measured either as the energy norm of the difference between the exact and approximate solutions, or as a dual norm of the residual. They are guaranteed, meaning that they feature no undetermined constants. (Local) lower bounds for the error are also derived. Herein, only generic constants independent of the diffusion coefficient appear, whence our estimates are fully robust with respect to the jumps in the diffusion coefficient. In particular, no condition on the diffusion coefficient like its monotonous increasing along paths around mesh vertices is imposed, whence the present results also include the cases with singular solutions. For the energy error setting, the key requirement turns out to be that the diffusion coefficient is piecewise constant on dual cells associated with the vertices of an original simplicial mesh and that harmonic averaging is used in the scheme. This is the usual case, e.g., for the cell-centered finite volume method, included in our analysis as well as the vertex-centered finite volume, finite difference, and continuous piecewise affine finite element ones. For the dual norm setting, no such a requirement is necessary. Our estimates are based on H(div)-conforming flux reconstruction obtained thanks to the local conservativity of all the studied methods on the dual grids, which we recall in the paper; mutual relations between the different methods are also recalled. Numerical experiments are presented in confirmation of the guaranteed upper bound, full robustness, and excellent efficiency of the derived estimators.  相似文献   

19.
We derive in this paper guaranteed and fully computable a posteriori error estimates for vertex-centered finite-volume-type discretizations of transient linear convection–diffusion–reaction equations. Our estimates enable actual control of the error measured either in the energy norm or in the energy norm augmented by a dual norm of the skew-symmetric part of the differential operator. Lower bounds, global-in-space but local-in-time, are also derived. These lower bounds are fully robust with respect to convection or reaction dominance and the final simulation time in the augmented norm setting. On the basis of the derived estimates, we propose an adaptive algorithm which enables to automatically achieve a user-given relative precision. This algorithm also leads to efficient calculations as it balances the time and space error contributions. As an example, we apply our estimates to the combined finite volume–finite element scheme, including such features as use of mass lumping for the time evolution or reaction terms, of upwind weighting for the convection term, and discretization on nonmatching meshes possibly containing nonconvex and non-star-shaped elements. A collection of numerical experiments illustrates the efficiency of our estimates and the use of the space–time adaptive algorithm.  相似文献   

20.
Adaptive FE-procedures in shape optimization   总被引:1,自引:1,他引:0  
In structural optimization the quality of the optimization result strongly depends on the reliability of the underlying structural analysis. This comprises the quality and range of the mechanical model, e.g. linear elastic or geometrically and materially nonlinear, as well as the accuracy of the numerical model, e.g. the discretization error of the FE-model. The latter aspect is addressed in the present contribution. In order to guarantee the quality of the numerical results the discretization error of the finite element solution is controlled and the finite element discretization is adaptively refined during the optimization process. Conventionally, so-called global error estimates are applied in structural optimization which estimate the error of the total strain energy. In the present paper local error estimates are introduced in shape optimization which allow to control directly the discretization error of local optimization criteria. In general, the adaptive refinement of the finite element discretization by remeshing affects the convergence of the optimization process if a gradient-based optimization algorithm is applied. In order to reduce this effect the sensitivity of the discretization error must also be restricted. Suitable refinement indicators are developed for globally and locally adaptive procedures. Finally, the potential of two techniques, which may improve the numerical efficiency of adaptive FE-procedures within the optimization process, is studied. The proposed methods and procedures are verified by 2-D shape optimization examples. Received June 3, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号