首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a series of Ca3 -x-ySry(PO4)2:xEu2 +, (0  x  0.075, 0  y  2.2) phosphors were prepared by flux assisted solid-state reaction method, and their photoluminescence properties were investigated. The β- to β′-phase transition of Ca3 -ySry(PO4)2 for high Sr2 + content was observed from the XRD patterns, and the corresponding optical bandgaps were obtained experimentally. Various Eu2 + emission centers were found, which generate tunable emission depending on the Sr2 + concentration. Broad and intense excitation bands exist in Eu2 + activated Ca3(PO4)2, and the introduction of Sr2 + further extends and enhances the excitation bands beyond 350 nm, which is beneficial to the applications on near ultraviolet LEDs. The morphology measurement reveals that the average size of particles with smooth surface is about 11.2 μm, which is suitable for the practical applications. These results indicate that the Ca3 -x-ySry(PO4)2:xEu2 + phosphors could be promising candidates for LEDs.  相似文献   

2.
Co2+ and Ni2+ ions doped 20ZnO + xLi2O + (30 ? x) K2O + 50B2O3 (5  x  25) mol% glasses are prepared using melt quenching technique. Structural changes of the prepared glasses by addition of transition metal oxides, CoO and NiO are investigated by UV–vis–NIR, FT-IR spectroscopy and XRD. The XRD pattern indicates the amorphous nature of prepared glasses. FT-IR measurements of the all glasses revealed that the network structure of the glasses are mainly based on BO3 and BO4 units placed in different structural groups in which the BO3 units being dominant. The optical absorption spectra suggest the site symmetry of Co2+ and Ni2+ ions in the glasses are near octahedral. Crystal field and inter-electronic repulsion parameters are also evaluated. The optical band gap and Urbach energies exhibited the mixed alkali effect. Various physical parameters such as density, refractive index, optical dielectric constant, polaron radius, electronic polarizability and inter-ionic distance are also determined.  相似文献   

3.
4.
Deformation-induced α2  γ phase transformation in high Nb containing TiAl alloys was investigated using high-resolution transmission electron microscopy (HREM) and energy dispersive X-ray spectroscopy (EDS). The dislocations appearing at the tip of deformation-induced γ plate (DI-γ) and the stacking sequence change of the α2 matrix were two key evidences for determining the occurrence of the deformation-induced α2  γ phase transformation. Compositional analysis revealed that the product phase of the room-temperature transformation was not standard γ phase; on the contrary, the product phase of the high-temperature transformation was standard γ phase.  相似文献   

5.
Thermoelectric properties of Re6GaxSeyTe15?y (0  x  2; 0  y  7.5) were studied in the temperature range 90–320 K. The measurements revealed p-type semi-conductivity in all samples. Relatively high values of the Seebeck coefficients, α, were obtained in all samples. The electrical resistivities and room temperature Seebeck coefficients increased as selenium concentrations increased, for each value of x. The room temperature Seebeck coefficients and resistivities decreased as gallium content increased, for each value of y. Low carrier concentrations were found at room temperatures, in agreement with large Seebeck coefficient values. Measurements suggested hopping conduction between 150 K and 280 K for all samples. Temperature dependences of the Seebeck coefficient below 150 K were accounted for by phonon drag effect. The power factors for the samples were calculated. Theoretical discussions of dependences of the measured quantities on temperature and composition are given. Usefulness of these materials as thermoelectrics is also discussed.  相似文献   

6.
Both the formation and diffusion activation energies of single vacancy migrating intra-layer and inter-layer near the Fe [0 0 1] Σ = 5 (3 1 0) and (2 1 0) symmetric tilt grain boundaries have been calculated by using the MAEAM and a MD method. From energy minimization, the vacancy concentration in the second layer is higher than the one in the other layers for both (3 1 0) and (2 1 0) STGBs. By the diffusion activation energies of the vacancies migrating intra-layer and inter-layer, the vacancies located from the first to the eighth layers of (3 1 0) STGB as well as the ones located from the first to the tenth layers of (2 1 0) STGB are favorably migrated to the second layer. Thus there is a vacancy aggregation tendency to the second layer near the grain boundary. For the vacancy migrating intra-layer and inter-layer, the influences of the grain boundary are respectively as far as to the fifth and eighth layers for (3 1 0) STGB as well as to the sixth and tenth layers for (2 1 0) STGB.  相似文献   

7.
Magnetic properties of hole doped, oxygen deficient double perovskite compounds, Gd1 ? xCaxBaCo2O5.5, have been investigated. Ferromagnetic transition temperatures increase and the anti-ferromagnetic transition temperatures decrease with Ca substitution leading to stabilisation of ferromagnetisim for x  0.05. A detailed study of the ferromagnetic phase indicates the presence of double hysterisis loops for Ca fractions, 0.05  x  0.2 in the 50–200 K temperature range, suggestive of the co-existence of two ferromagnetic phases with different co-ercivities. Based on the magnetisation and transport measurements a phase diagram is proposed for Ca doped GdBaCo2O5.5.  相似文献   

8.
The novel Fe/Nb co-doped SrCo1 ? 2x(Fe,Nb)xO3 ? δ (x = 0.05, 0.10) perovskite oxides were synthesized by the solid-state method. Structural and chemical stability of the SrCo1 ? 2x(Fe,Nb)xO3 ? δ (x = 0.05, 0.10) oxides were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TG) and X-ray diffraction (XRD). The results demonstrated that the structural and chemical stability of the Fe/Nb co-doped SrCo1 ? 2x(Fe,Nb)xO3 ? δ (x = 0.05, 0.10) is improved significantly. The oxygen sorption properties of the SrCo1 ? 2x(Fe,Nb)xO3 ? δ (x = 0.05, 0.10) oxides were investigated between 300–900 °C in air, and the high oxygen sorption capacity of 11.5 and 10.3 mL O2 (STP)/g oxide, respectively, are obtained.  相似文献   

9.
In this study we report the effect of Al2O3 on the low field magnetoresistance (LFMR) of (1 ? x) La0.7Ca0.3MnO3 + x Al2O3 composite synthesized through a solid-state reaction method combined with an energy milling method. Based upon a spin-polarized tunneling of conduction electrons at the grain boundaries, we have proposed a phenomenological model to explain the observed electrical transport behavior over the whole temperature range (5  300 K), especially the gradual drop of metal-insulator transition temperature (Tp = Tmax) as a function of increasing Al2O3 content, while the ferromagnetic–paramagnetic transition temperature (TC) remains almost constant (TC = 250 K).  相似文献   

10.
11.
Ti1 ? xVxO2 (x = 0.0–0.10) nanopowders were successfully synthesized by a microwave-assisted sol–gel technique and their crystal structure and electronic structure were investigated. The products were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Raman and UV–Vis spectroscopy. The results revealed that TiO2 powders maintained the anatase phase for calcination temperature below 600 °C, but gradually changed to the rutile phase above 800 °C. The formation of the rutile phase was completed at 1000 °C. For Ti1 ? xVxO2 (x = 0.05) powders, the phase transformation appeared at 600 °C. The absorption edge of Ti1 ? xVxO2 (x > 0) powders broadened to the visible region with increasing V concentration and a strong visible light absorption was obtained with 10% V doping. V doping and subsequent coexistence of both anatase and rutile phases in our Ti1 ? xVxO2 nanoparticles are considered to be responsible for the enhanced absorption of visible light up to 800 nm.  相似文献   

12.
Rutile-doped hematite xTiO2(1 ? x)α-Fe2O3 (x = 0.0–1.0) nanostructures were synthesized using mechanochemical activation by ball milling. Their complex structural, magnetic and thermal properties were characterized by X-ray diffraction, Mössbauer spectroscopy and simultaneous DSC–TGA. XRD patterns yielded the dependence of lattice parameters and grain size as a function of ball milling time. For the molar concentrations x = 0.1 and 0.3, the Mössbauer spectra were fitted with one, two, three or four sextets, corresponding to the degree of Ti ion substitution of Fe ions in hematite lattice. After 12 h of ball milling, the completion of Ti ion substitution of Fe ions in hematite lattice occurs for x = 0.1 and 0.3. For x = 0.5 and 0.7, Mössbauer spectra fitting required sextets and a quadrupole-split doublet, representing Fe ions substituting Ti ions in the rutile lattice. The completion of Fe ion substitution of Ti ions in rutile lattice was not observed, as indicated by XRD patterns and Mössbauer spectra for these two molar concentrations. Simultaneous DSC–TGA measurements revealed that the mechanochemical activation by ball milling has a strong effect on the thermal behavior of this nanostructure system. The enthalpy dropped dramatically after 2 h of milling time, indicating the strong solid–solid interactions between TiO2 and α-Fe2O3 after ball milling. The change in weight loss of hematite was caused by the decrease of grain size and ion substitutions between Fe and Ti after mechanochemical activation.  相似文献   

13.
14.
The effect of Mn+2Co+2Ti+4 substitution on microwave absorption has been studied for BaCoxMnxTi2xFe12 ? 4xO19 ferrite–acrylic resin composites, where x varies from 0.3 to 0.5 in steps of 0.1, in frequency range from 12 to 20 GHz. X-ray diffraction (XRD), scanning electron microscope (SEM), vibrating sample magnetometer, and vector network analyzer were used to analyze the structures, electromagnetic and microwave absorption properties. The results showed that, the magnetoplumbite structures for all samples have been formed. Based on microwave measurement on reflectivity, BaCoxMnxTi2xFe12 ? 4xO19 may be a good candidate for electromagnetic compatibility and other practical applications at high frequency.  相似文献   

15.
16.
LaMg1 ? xNixAl11O19 (x = 0, 0.25, 0.5, 0.75, 1) ceramics are fabricated by pressureless-sintering method at 1700 °C for 10 h in air. The microstructure and thermo-optical properties of LaMg1 ? xNixAl11O19 ceramics are investigated by the X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy measurements. The influence of NiO doping on structure and thermo-optical properties of LaMg1 ? xNixAl11O19 ceramics is investigated. The partial substitution of Ni2+ for Mg2+ results in a significant increase in emissivity at low wavelengths as compared with unmodified LaMgAl11O19. When the Ni2+ content increases to x = 0.75 or above, LaMg1 ? xNixAl11O19 ceramics have a high emissivity value above 0.70 at low wavelengths at 500 °C. The measured emissivity of all LaMg1 ? xNixAl11O19 ceramics shows a similar trend in the wavelength range of 6 to 14 μm.  相似文献   

17.
This paper addresses for the first time two of the main challenges in the field of electroceramics. The first one is the development of a continuous, fast and reliable synthesis method for producing sub-20 nm barium titanate zirconate (BaTi1-yZryO3 with 0  y  1–BTZ) nanocrystals over the whole solid solution, while keeping a narrow size distribution. The second one concerns the processing of dense and nanostructured lead free electroceramics highlighting the size effect on the crossover from ferroelectric to relaxor, in the case of grains smaller than 100 nm. This was achieved combining the supercritical fluid technology to produce in continuous and at moderate temperature (400 °C) BTZ nanocrystals, with Spark Plasma Sintering (SPS) to prevent grain growth during the sintering.  相似文献   

18.
Hydroxy apatite (HAp) ceramic was synthesized using traditional sintering. Dilatometric and lattice thermal expansion properties of a HAp ceramic were evaluated at temperatures of ? 100–50 °C. In that temperature range, the dilatometric thermal expansion coefficient and the lattice thermal expansion coefficient of the HAp ceramic were, respectively, 10.6 × 10? 6/°C and 9.9 × 10? 6/°C. Furthermore, thermal expansion properties of a human tooth were measured. The thermal expansion coefficient of the horizontal direction perpendicular to the growing direction of a tooth was 15.5 × 10? 6/°C; that of the vertical direction along with the direction of tooth growth was 18.9 × 10? 6/°C at the temperature range described above.  相似文献   

19.
Qiang Zhang  Zhenrong Li  Zhuo Xu 《Materials Letters》2011,65(19-20):3143-3145
The phase structure and phase transition of (1 ? x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 (BMT-PT) ceramics with x = 0.0–0.42 were investigated. It was found that pure perovskite phases were achieved for x  0.28, while Bi4Ti3O12 or Bi12TiO20 phase existed for x  0.15. The anomaly dielectric peaks were observed around 620 °C for BMT-(0.28–0.38)PT samples, thus phase transition in (1 ? x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics was studied using thermal expansion. It was found that dielectric anomalies at ~ 620 °C were resulted from the phase transition of the second phase and defects inside samples.  相似文献   

20.
Ferroelectric ceramics in the vicinity of morphotropic phase boundary (MPB) with compositions represented as (1 ? x)[(1 ? y)(Pb(Mg1/3Nb2/3)O3)–y(Pb(Yb1/2Nb1/2)O3)]–xPbTiO3 were prepared by solid state reaction. The addition of PYbN to PMN–PT decreased the sintering temperature from 1200 °C (y = 0.25) to 1000 °C (y = 0.75). The PT content, where the MPB was observed, increased with the PYbN addition. A remanent polarization value of 28.5 µC/cm2 and a coercive field value of 11 kV/cm were measured from 0.62[0.25PMN–0.75PYbN]–0.38PT ceramics, which were close to the ones measured from PMN–0.32PT ceramics. In addition, the Curie temperature was found to increase with PYbN additions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号