首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Y0.6Sr0.4Mn1–y Co y O3 (0 y 0.4) perovskite oxides were prepared by the coprecipitation method. The effect of Co substitution for Mn on the crystal structure, electrical conductivity and thermal expansion properties were investigated. By X-ray powder diffraction, the crystal structure was found to change from hexagonal symmetry of Y0.8Sr0.2MnO3 to orthorhombic of Y0.6Sr0.4Mn1–y Co y O3. The differences in the structure of the unsubstituted Y1–x Sr x MnO3 (0.2 x 0.4) are attributed to the average ionic radii of the cations and the amounts of Mn4+ present. The results of electrical conductivity analysis can be described by the small polaron hopping conductivity model. With Co substitution, the activation energy increases, possibly due to an increase of Jahn–Teller distortion, at an extent higher than the increase of the concentration of charge carriers; thus, the electrical conductivity decreases. In addition, the relative densities of the materials reached 94% with sintering at 1350°C for 12 h and had higher concentration of the available lattice sites, thus showing higher conductivity, than that with sintering at 1300°C for 6 h, which achieved 70% relative density. It is also found that the thermal expansion coefficient (TEC) increases as the Sr and Co content of Y1–x Sr x Mn1–y Co y O3 increases and those with Co content of y = 0.2 exhibit TEC compatibility with YSZ.  相似文献   

2.
In order to find a relationship between structural and electrical properties, niobium and yttrium doped SrTiO3 ceramics were prepared via solid-state reaction. The samples were sintered in hydrogen and air conditions. The samples were also fabricated with a pore-former to obtain highly porous specimens. The electrical properties of Nb-doped SrTiO3 samples and yttrium and niobium co-doped SrTiO3 were compared. The comparable electrical properties were observed and discussed according to previous literature reports. It was noticed that the synthesis in a reducing hydrogen atmosphere can increase the solubility of dopants. Moreover, the samples sintered in air presented lower conductivity level and worse structural properties than the samples sintered in hydrogen. The explanation of obtained results was also suggested and discussed.  相似文献   

3.
《Nanostructured Materials》1998,10(3):457-464
In this study, silver and iron elements are evaporated simultaneously to form nanocrystalline solid solution particles and then quench to liquid nitrogen temperature. The average composition of the nanocrystalline Ag-Fe system analyzed by scanning electron microscopy with energy-dispersive spectroscopy is close to the gross composition of the raw materials. X-ray diffraction patterns indicate only Ag peaks in those of the nanocrystalline Ag-Fe solid solutions. Transmission electron microscopy images of the Ag-Fe system indicates a mean particle of about 10 nm for these nanocrystalline solid solutions. The magnetic properties of Ag-Fe systems depend on the mean particle's sizes and the concentration of solid solutions. The temperature dependence of the magnetic properties is analyzed and related to the microstructural changes induced by the thermal treatments. Nanocrystalline Ag-Fe system with a Curie temperature of Fe occurs at about 580 °C. The magnetization and remanence of as prepared or after heat-treatment nanocrystalline Ag-Fe solid solutions increase with increasing atomic percentage of iron.  相似文献   

4.
5.
We employ the full-potential linearized augmented plane wave plus local orbital (FP L/APW + lo) method based on the density functional theory (DFT) in order to investigate the structural, elastic, electronic, and magnetic properties of ordered dilute ferromagnetic semiconductors Ga1?x Mn x P and In1?x Mn x P at (x = 0.25) in the zinc blende phase, using generalized gradient approximation, GGA (PBE). To our knowledge the elastic constants of these compounds have not yet been measured or calculated, hence our results serve as a first quantitative theoretical prediction for future study. Results of calculated electronic structures and magnetic properties reveal that both Ga0.75Mn0.25P and In0.75Mn0.25P have stable ferromagnetic ground state, and they are ideal half-metallic (HM) ferromagnetic at their equilibrium lattice constants. Also we show the nature of the bonding from the charge spin-densities calculations. The calculated total magnetic moments are 4.0 μB per unit cell for both Ga0.75Mn0.25P and In0.75Mn0.25P, which agree with the Slater–Pauling rule quite well, and we observe that p–d hybridization reduces the local magnetic moment of Mn from its free space charge value and produces smaller local magnetic moments on the nonmagnetic Ga, In and P sites. The values of N 0α and N 0β exchange constants confirm the magnetic nature of these compounds. From the robust half-metallicity of Ga0.75Mn0.25P and In0.75Mn0.25P as a function of lattice constant is also investigated.  相似文献   

6.
Amorphous (Fe1–x Nb x l B100–l alloys with 0 x 0.15 and 74 T g, crystallization temperatureT x, and microhardnessH v, but to decrease the magnetization and Curie temperatureT c. The effects of niobium onT x,H v, andT c in iron-based amorphous alloys are similar to those of chromium, manganese, molybdenum, tungsten and vanadium.  相似文献   

7.
Wang  Manman  Dai  Haiyang  Li  Tao  Chen  Jing  Yan  Fufeng  Xue  Renzhong  Xing  Xinbo  Chen  Dengying  Ping  Tengda  He  Junjie 《Journal of Materials Science: Materials in Electronics》2021,32(23):27348-27361

In this work, the effects of Ti doping on the microstructure, dielectric, and magnetic properties of GdMn(1?x)TixO3 (x?=?0.00–0.15) ceramic samples synthesized using a solid-state reaction were investigated. All the experimental samples formed a single-phase structure, and no structural transformation occurred within the experimental doping range; however, Ti doping caused lattice shrinkage. Ti doping reduced the grain size, and the microstructure of the synthesized samples appeared more compact in scanning electron microscopy images. The lattice distortion of GdMn(1?x)TixO3 caused by Ti substitution at the Mn sites resulted in changes in the Raman vibration modes. X-ray photoelectron spectroscopy results showed that the valence state transition of the Ti and Mn ions occurred and the concentration of Ti4+, Mn3+ ions and oxygen vacancies changed due to the charge compensation induced by Ti doping. Ti doping had a significant influence on the size and concentration of cation vacancies in the GdMn(1?x)TixO3 samples. Appropriate Ti doping was shown to reduce the dielectric loss, improve the frequency stability of the dielectric constant, and significantly affect the long-range ordering of Gd3+ magnetic moments and clearly reduce magnetization.

  相似文献   

8.
Electron microscopy is used to reveal the competitive epitaxial growth of bcc structure (Cr1?x Mn x )5Al8 and (Cr1?y Mn y )2AlC [M n+1AX n (MAX)] phase during both magnetron sputtering and arc deposition. X-ray diffraction θ–2θ measurements display identical peak positions of (000n)-oriented MAX phase and (Cr1?x Mn x )5Al8, due to the interplanar spacing of (Cr1?x Mn x )5Al8 that matches exactly half a unit cell of (Cr1?y Mn y )2AlC. Vibrating sample magnetometry shows that a thin film exclusively consisting of (Cr1?x Mn x )5Al8 exhibits a magnetic response, implying that the potential presence of this phase needs to be taken into consideration when evaluating the magnetic properties of (Cr, Mn)2AlC.  相似文献   

9.
Seven Cd x Zn(1 ? x Te solid solutions with x = 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 1.0 were synthesized by fusing stoichiometric amounts of CdTe and ZnTe constituents in silica tubes. Each composition was used in the preparation of a group of thin films of different thicknesses. Structural investigation of the obtained films indicates they have a polycrystalline structure with predominant diffraction lines corresponding to (111) (220) and (311) reflecting planes, which can be attributed to the characteristics of growth with the (111) plane. The optical constants (the refractive index n, the absorption index k, and the absorption coefficient α) of Cd x Zn(1 \s -x) Te thin films were determined in the spectral range 500–2000 nm. At certain wavelengths it was found that the refractive index, n, increases with increasing molar fraction, x. It was also found that plots of α2 (hv) and α1/2 (hv) yield straight lines, corresponding to direct and indirect allowed transitions respectively obeying the following two equations: $$\begin{gathered} E_g^d = 1.583 + 0.277x + 0.197x^2 \hfill \\ E_g^{ind} = 1.281 + 0.111x + 0.302x^2 \hfill \\ \end{gathered}$$   相似文献   

10.
Ferroelectric materials, such as barium titanate (BaTiO3), have been extensively studied for application in electronic and optical devices. The substitution of Ba by Ca is an effective method to improve the piezoelectricity temperature stability, as it can greatly lower the tetragonal–orthorhombic phase transition temperature, whereas the change of the Curie point is negligible. Ba(1?x)Ca x TiO3 (x = 0, 0.05, 0.10, 0.15, and 0.20) powders were prepared by complex polymerization method. The effect of calcium on the tetragonality of the BaTiO3 system was monitored using basic characterization techniques: X-ray diffraction, differential scanning calorimetry, and Raman spectroscopy. The results indicate that increased calcium contents raise the Curie temperature (T c) and that the addition of calcium in the BT matrix reduces tetragonality.  相似文献   

11.
In this report, we have studied the compositional dependence of structural, optical and electrical properties of polycrystalline In x Ga1?x N thin films grown by modified activated reactive evaporation. The growth was monitored by optical emission spectroscopy. The thickness of the films was in the range ~600–800 nm. The phase, crystallinity and composition of the films were determined by X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The surface morphology was studied by atomic force microscopy. The band gaps of these films obtained from transmittance and photoluminescence measurements were found to vary from 1.88 to 3.22 eV. All the films show n-type conductivity. The carrier concentration was found to be decreasing with increase in gallium incorporation which is in good agreement with the free carrier absorption observed in transmittance spectra.  相似文献   

12.
(HfO2)1 ? x (Sc2O3) x films have been grown by chemical vapor deposition (CVD) using the volatile complexes hafnium 2,2,6,6-tetramethyl-3,5-heptanedionate (Hf(thd)4) and scandium 2,2,6,6-tetramethyl-3,5-heptanedionate (Sc(thd)3) as precursors. The composition and crystal structure of the films containing 1 to 36 at % Sc have been determined. The results demonstrate that, in the composition range 9 to 14 at % scandium, the films are nanocrystalline and consist of an orthorhombic three-component phase, which has not been reported previously. Using Al/(HfO2)1 ? x (Sc2O3) x /Si test structures, we have determined the dielectric permittivity of the films and the leakage current through the insulator as functions of scandium concentration. The permittivity of the films with the orthorhombic structure reaches k = 42–44, with a leakage current density no higher than ~10?8 A/cm2.  相似文献   

13.
14.
The temperature dependence of the magnetization of the quenched and slowly cooled samples of Fe7Se8 and (Fe1–x M x )7Se8 samples with M = cobalt and nickel and x=0.02, 0.05 and 0.08 are given. All the thermomagnetic curves obtained belong to the Weiss ferrimagnetic type. Discontinuities indicating a magnetic transformation to antiferromagnetic order were obtained for some samples. The magnetic moment at 0 and 78 K (M 0 and M78) dependence on nickel and cobalt concentrations are given. The temperature dependence of the reciprocal susceptibility in the paramagnetic range was studied, and the asymptotic Curie points are given. The values of the effective magnetic moment, eff, and the number of unpaired electrons were calculated. The thermal variation of the electrical conductivity of the host material, Fe7Se8, is given.  相似文献   

15.
Microwave sintering has emerged in recent years as a new method for sintering a variety of materials that has shown significant advantages against conventional sintering procedures. Sr and Pb doped BaTiO3 ceramics has been prepared by the high energy ball milling followed by conventional and microwave sintering. The phase formation was confirmed by X-ray diffractometer followed by Scanning electron microscopy, atomic force microscopy and Transmission electron microscopy. Dielectric constant was measured on both the samples and it is observed that, in Ba0.8Pb0.2TiO3 (abbreviated as BPT), it increased more than one order of magnitude and in Ba0.8Sr0.2TiO3 (abbreviated as BST), it increased two orders of magnitudes at room temperature and Curie transition temperature by microwave sintering. Interestingly the Curie transition temperature of BPT value decreased from 224 to 210 °C, where as in BST ferroelectric ceramics, no variation of transition temperature by conventional sintering and microwave sintering respectively. This promising technique has distinguished characteristics of energy saving, rapid processing and uniform temperature distribution throughout the samples.  相似文献   

16.
Rocksalt-type (Ni1–x Li x )O (x=0.1 and 0.2) was synthesized at 1350° C in air and its electrical resistivity (R) was measured under various relative humidities (H). R increases with increasing H in the range 0H79%, reaches a maximum value, then decreases in the range 79%<H100%. The increase in R is explained by an electron boundary layer model. On the other hand, the decrease in R is explained by ionic conductivity.  相似文献   

17.
In this paper, the effects of Sr, Sb, Sr+Sb and Sn on Mg2Si reinforcement phases in an Mg–Al–Zn–Si alloy are studied, and the structures and characteristics of Mg2(SixSn1?x) phases are analysed with first-principle calculations. The results show that the coarse eutectic Mg2Si can be refined by modifying processes with Sr, Sb, and their combination. When alloying with Sn, a new reinforcement phase Mg2(SixSn1?x) forms by a substitution reaction, instead of Mg2Si. Calculations indicate that Mg2(SixSn1?x) has a certain percentage of covalent bonds, which ensure it has sufficient hardness to act as a reinforcement phase. Calculated results for physical parameters, such as the bulk modulus and shear modulus, indicate that an Mg2(SixSn1?x) intermetallic exhibits greater ductility than Mg2Si.

Highlights

  • The coarse eutectic Mg2Si can be refined by modifying processes.

  • A new phase Mg2(SixSn1?x) forms by substitution reaction during solidification.

  • Mg2(SixSn1?x) has certain covalent bound percentage.

  • Mg2(SixSn1?x) has better plasticity than that of Mg2Si.

  相似文献   

18.
Journal of Materials Science: Materials in Electronics - In the present work, lead-free piezoelectric ceramics (Rx)(K0.5Na0.5)(Nb0.96Sb0.04O3)?x(Bi0.5Na0.5)(Zr0.8Sn0.1Hf0.1)O3 [abb. as...  相似文献   

19.
Ternary Ⅲ-Ⅴ nanowires (NWs) cover a wide range of wavelengths in the solar spectrum and would greatly benefit from being synthesized as position-controlled arrays for improved vertical yield,reprodudbility,and tunable optical absorption.Here,we report on successful selective-area epitaxy of metal-particle-free vertical InxGa1-xP NW arrays using metal-organic vapor phase epitaxy and detail their optical properties.A systematic growth study establishes the range of suitable growth parameters to obtain uniform NW growth over a large array.The optical properties of the NWs were characterized by room-temperature cathodoluminescence spectroscopy.Tunability of the emission wavelength from 870 nm to approximately 800 nm was achieved.Transmission electron microscopy and energy dispersive X-ray measurements performed on crosssection samples revealed a pure wurtzite crystal structure with very few stacking faults and a slight composition gradient along the NW growth axis.  相似文献   

20.
《Materials Letters》2003,57(16-17):2466-2471
The pseudobinary thermoelectric alloys (PbTe)1−x–(SnTe)x (0≤x≤0.4) doped with 0.02 mol% Ag concentration were prepared by pressureless sintering (PS), and their properties were optimized to fit the preparation of functionally graded materials (FGM) with gradient composition. The calculation shows that the FGM can raise the maximal power output to approximately 200.0 (W m−2), at least 21% greater than that of the best monolithic alloys (PbTe)0.6–(SnTe)0.4. The measurement shows that the maximum power output of FGM is about 175.0 (W m−2), and at least increases by about 16% as compared to those of any monolithic materials (PbTe)1−x–(SnTe)x (0≤x≤0.4) without or with different Ag concentration doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号