首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
We consider the problem of predicting a sequence of real-valued multivariate states that are correlated by some unknown dynamics, from a given measurement sequence. Although dynamic systems such as the State-Space Models are popular probabilistic models for the problem, their joint modeling of states and observations, as well as the traditional generative learning by maximizing a joint likelihood may not be optimal for the ultimate prediction goal. In this paper, we suggest two novel discriminative approaches to the dynamic state prediction: 1) learning generative state-space models with discriminative objectives and 2) developing an undirected conditional model. These approaches are motivated by the success of recent discriminative approaches to the structured output classification in discrete-state domains, namely, discriminative training of Hidden Markov Models and Conditional Random Fields (CRFs). Extending CRFs to real multivariate state domains generally entails imposing density integrability constraints on the CRF parameter space, which can make the parameter learning difficult. We introduce an efficient convex learning algorithm to handle this task. Experiments on several problem domains, including human motion and robot-arm state estimation, indicate that the proposed approaches yield high prediction accuracy comparable to or better than state-of-the-art methods.  相似文献   

2.
This paper presents a method for designing semi-supervised classifiers trained on labeled and unlabeled samples. We focus on probabilistic semi-supervised classifier design for multi-class and single-labeled classification problems, and propose a hybrid approach that takes advantage of generative and discriminative approaches. In our approach, we first consider a generative model trained by using labeled samples and introduce a bias correction model, where these models belong to the same model family, but have different parameters. Then, we construct a hybrid classifier by combining these models based on the maximum entropy principle. To enable us to apply our hybrid approach to text classification problems, we employed naive Bayes models as the generative and bias correction models. Our experimental results for four text data sets confirmed that the generalization ability of our hybrid classifier was much improved by using a large number of unlabeled samples for training when there were too few labeled samples to obtain good performance. We also confirmed that our hybrid approach significantly outperformed generative and discriminative approaches when the performance of the generative and discriminative approaches was comparable. Moreover, we examined the performance of our hybrid classifier when the labeled and unlabeled data distributions were different.  相似文献   

3.
In this paper we study statistical properties of semi-supervised learning, which is considered to be an important problem in the field of machine learning. In standard supervised learning only labeled data is observed, and classification and regression problems are formalized as supervised learning. On the other hand, in semi-supervised learning, unlabeled data is also obtained in addition to labeled data. Hence, the ability to exploit unlabeled data is important to improve prediction accuracy in semi-supervised learning. This problem is regarded as a semiparametric estimation problem with missing data. Under discriminative probabilistic models, it was considered that unlabeled data is useless to improve the estimation accuracy. Recently, the weighted estimator using unlabeled data achieves a better prediction accuracy compared to the learning method using only labeled data, especially when the discriminative probabilistic model is misspecified. That is, improvement under the semiparametric model with missing data is possible when the semiparametric model is misspecified. In this paper, we apply the density-ratio estimator to obtain the weight function in semi-supervised learning. Our approach is advantageous because the proposed estimator does not require well-specified probabilistic models for the probability of the unlabeled data. Based on statistical asymptotic theory, we prove that the estimation accuracy of our method outperforms supervised learning using only labeled data. Some numerical experiments present the usefulness of our methods.  相似文献   

4.
In this paper, we propose to reinforce the Self-Training strategy in semi-supervised mode by using a generative classifier that may help to train the main discriminative classifier to label the unlabeled data. We call this semi-supervised strategy Help-Training and apply it to training kernel machine classifiers as support vector machines (SVMs) and as least squares support vector machines. In addition, we propose a model selection strategy for semi-supervised training. Experimental results on both artificial and real problems demonstrate that Help-Training outperforms significantly the standard Self-Training. Moreover, compared to other semi-supervised methods developed for SVMs, our Help-Training strategy often gives the lowest error rate.  相似文献   

5.
Learning models for detecting and classifying object categories is a challenging problem in machine vision. While discriminative approaches to learning and classification have, in principle, superior performance, generative approaches provide many useful features, one of which is the ability to naturally establish explicit correspondence between model components and scene features—this, in turn, allows for the handling of missing data and unsupervised learning in clutter. We explore a hybrid generative/discriminative approach, using ‘Fisher Kernels’ (Jaakola, T., et al. in Advances in neural information processing systems, Vol. 11, pp. 487–493, 1999), which retains most of the desirable properties of generative methods, while increasing the classification performance through a discriminative setting. Our experiments, conducted on a number of popular benchmarks, show strong performance improvements over the corresponding generative approach. In addition, we demonstrate how this hybrid learning paradigm can be extended to address several outstanding challenges within computer vision including how to combine multiple object models and learning with unlabeled data.  相似文献   

6.
Recent advances have demonstrated substantial benefits from learning with both generative and discriminative parameters. On the one hand, generative approaches address the estimation of the parameters of the joint distribution—\(\mathrm{P}(y,\mathbf{x})\), which for most network types is very computationally efficient (a notable exception to this are Markov networks) and on the other hand, discriminative approaches address the estimation of the parameters of the posterior distribution—and, are more effective for classification, since they fit \(\mathrm{P}(y|\mathbf{x})\) directly. However, discriminative approaches are less computationally efficient as the normalization factor in the conditional log-likelihood precludes the derivation of closed-form estimation of parameters. This paper introduces a new discriminative parameter learning method for Bayesian network classifiers that combines in an elegant fashion parameters learned using both generative and discriminative methods. The proposed method is discriminative in nature, but uses estimates of generative probabilities to speed-up the optimization process. A second contribution is to propose a simple framework to characterize the parameter learning task for Bayesian network classifiers. We conduct an extensive set of experiments on 72 standard datasets and demonstrate that our proposed discriminative parameterization provides an efficient alternative to other state-of-the-art parameterizations.  相似文献   

7.
Semi-supervised learning has attracted much attention in pattern recognition and machine learning. Most semi-supervised learning algorithms are proposed for binary classification, and then extended to multi-class cases by using approaches such as one-against-the-rest. In this work, we propose a semi-supervised learning method by using the multi-class boosting, which can directly classify the multi-class data and achieve high classification accuracy by exploiting the unlabeled data. There are two distinct features in our proposed semi-supervised learning approach: (1) handling multi-class cases directly without reducing them to multiple two-class problems, and (2) the classification accuracy of each base classifier requiring only at least 1/K or better than 1/K (K is the number of classes). Experimental results show that the proposed method is effective based on the testing of 21 UCI benchmark data sets.  相似文献   

8.
Developing methods for designing good classifiers from labeled samples whose distribution is different from that of test samples is an important and challenging research issue in the fields of machine learning and its application. This paper focuses on designing semi-supervised classifiers with a high generalization ability by using unlabeled samples drawn by the same distribution as the test samples and presents a semi-supervised learning method based on a hybrid discriminative and generative model. Although JESS-CM is one of the most successful semi-supervised classifier design frameworks based on a hybrid approach, it has an overfitting problem in the task setting that we consider in this paper. We propose an objective function that utilizes both labeled and unlabeled samples for the discriminative training of hybrid classifiers and then expect the objective function to mitigate the overfitting problem. We show the effect of the objective function by theoretical analysis and empirical evaluation. Our experimental results for text classification using four typical benchmark test collections confirmed that with our task setting in most cases, the proposed method outperformed the JESS-CM framework. We also confirmed experimentally that the proposed method was useful for obtaining better performance when classifying data samples into either known or unknown classes, which were included in given labeled samples or not, respectively.  相似文献   

9.
10.
Dealing with high-dimensional data has always been a major problem in many pattern recognition and machine learning applications. Trace ratio criterion is a criterion that can be applicable to many dimensionality reduction methods as it directly reflects Euclidean distance between data points of within or between classes. In this paper, we analyze the trace ratio problem and propose a new efficient algorithm to find the optimal solution. Based on the proposed algorithm, we are able to derive an orthogonal constrained semi-supervised learning framework. The new algorithm incorporates unlabeled data into training procedure so that it is able to preserve the discriminative structure as well as geometrical structure embedded in the original dataset. Under such a framework, many existing semi-supervised dimensionality reduction methods such as SDA, Lap-LDA, SSDR, SSMMC, can be improved using our proposed framework, which can also be used to formulate a corresponding kernel framework for handling nonlinear problems. Theoretical analysis indicates that there are certain relationships between linear and nonlinear methods. Finally, extensive simulations on synthetic dataset and real world dataset are presented to show the effectiveness of our algorithms. The results demonstrate that our proposed algorithm can achieve great superiority to other state-of-art algorithms.  相似文献   

11.
12.
基于EM的启动子序列半监督学习   总被引:1,自引:0,他引:1  
启动子的预测对于基因的定位有重要意义.已有多种对启动子进行预测的算法,涉及到信号搜索、内容搜索和CpG岛搜索等多种策略.基于马尔可夫模型的启动子分类方法也有研究,其中的转移概率都是直接通过统计已标号训练样本序列得来的.将半监督学习思想引入启动子序列分析中,推导出转移概率等参数的最大似然估计公式.实验中将待测试基因序列片段同已标号训练样本混合,利用得出的参数值对基因序列片段进行识别,使用少量的已标号的样本数据能得出较好的启动子识别结果.  相似文献   

13.
产生式方法和判别式方法是解决分类问题的两种不同框架,具有各自的优势。为利用两种方法各自的优势,文中提出一种产生式与判别式线性混合分类模型,并设计一种基于遗传算法的产生式与判别式线性混合分类模型的学习算法。该算法将线性混合分类器混合参数的学习看作一个最优化问题,以两个基分类器对每个训练数据的后验概率值为数据依据,用遗传算法找出线性混合分类器混合参数的最优值。实验结果表明,在大多数数据集上,产生式与判别式线性混合分类器的分类准确率优于或近似于它的两个基分类器中的优者。  相似文献   

14.
半监督文本分类综述   总被引:3,自引:0,他引:3       下载免费PDF全文
文本分类是人们日常工作中经常遇到的问题,也是机器学习的重要研究内容.半监督学习算法同时考虑有标记和无标记数据,能显著提升学习效果.给出了文本分类的定义和特点,介绍了传统的监督学习分类算法和评价指标,对半监督文本分类的特点和基础理论进行了分析,并具体介绍了一些半监督文本分类算法,如贝叶斯方法和正则化方法.  相似文献   

15.
以往半监督多示例学习算法常把未标记包分解为示例集合,使用传统的半监督单示例学习算法确定这些示例的潜在标记以对它们进行利用。但该类方法认为多示例样本的分类与其概率密度分布紧密相关,且并未考虑包结构对包分类标记的影响。提出一种基于包层次的半监督多示例核学习方法,直接利用未标记包进行半监督学习器的训练。首先通过对示例空间聚类把包转换为概念向量表示形式,然后计算概念向量之间的海明距离,在此基础上计算描述包光滑性的图拉普拉斯矩阵,进而计算包层次的半监督核,最后在多示例学习标准数据集和图像数据集上测试本算法。测试表明本算法有明显的改进效果。  相似文献   

16.
Image retrieval based on augmented relational graph representation   总被引:1,自引:1,他引:0  
The “semantic gap” problem is one of the main difficulties in image retrieval tasks. Semi-supervised learning, typically integrated with the relevance feedback techniques, is an effective method to narrow down the semantic gap. However, in semi-supervised learning, the amount of unlabeled data is usually much greater than that of labeled data. Therefore, the performance of a semi-supervised learning algorithm relies heavily on its effectiveness of using the relationships between the labeled and unlabeled data. This paper proposes a novel algorithm to better explore those relationships by augmenting the relational graph representation built on the entire data set, expected to increase the intra-class weights while decreasing the inter-class weights and linking the potential intra-class data. The augmented relational matrix can be directly used in any semi-supervised learning algorithms. The experimental results in a range of feedback-based image retrieval tasks show that the proposed algorithm not only achieves good generality, but also outperforms other algorithms in the same semi-supervised learning framework.  相似文献   

17.
Human pose estimation is one of the most popular research topics in the past two decades, especially with the introduction of human pose datasets for benchmark evaluation. These datasets usually capture simple daily life actions. Here, we introduce a new dataset, the Martial Arts, Dancing and Sports (MADS), which consists of challenging martial arts actions (Tai-chi and Karate), dancing actions (hip-hop and jazz), and sports actions (basketball, volleyball, football, rugby, tennis and badminton). Two martial art masters, two dancers and an athlete performed these actions while being recorded with either multiple cameras or a stereo depth camera. In the multi-view or single-view setting, we provide three color views for 2D image-based human pose estimation algorithms. For depth-based human pose estimation, we provide stereo-based depth images from a single view. All videos have corresponding synchronized and calibrated ground-truth poses, which were captured using a Motion Capture system. We provide initial baseline results on our dataset using a variety of tracking frameworks, including a generative tracker based on the annealing particle filter and robust likelihood function, a discriminative tracker using twin Gaussian processes [1], and hybrid trackers, such as Personalized Depth Tracker [2]. The results of our evaluation suggest that discriminative approaches perform better than generative approaches when there are enough representative training samples, and that the generative methods are more robust to diversity of poses, but can fail to track when the motion is too quick for the effective search range of the particle filter. The data and the accompanying code will be made available to the research community.  相似文献   

18.
Semi-supervised learning has attracted a significant amount of attention in pattern recognition and machine learning. Most previous studies have focused on designing special algorithms to effectively exploit the unlabeled data in conjunction with labeled data. Our goal is to improve the classification accuracy of any given supervised learning algorithm by using the available unlabeled examples. We call this as the Semi-supervised improvement problem, to distinguish the proposed approach from the existing approaches. We design a metasemi-supervised learning algorithm that wraps around the underlying supervised algorithm and improves its performance using unlabeled data. This problem is particularly important when we need to train a supervised learning algorithm with a limited number of labeled examples and a multitude of unlabeled examples. We present a boosting framework for semi-supervised learning, termed as SemiBoost. The key advantages of the proposed semi-supervised learning approach are: 1) performance improvement of any supervised learning algorithm with a multitude of unlabeled data, 2) efficient computation by the iterative boosting algorithm, and 3) exploiting both manifold and cluster assumption in training classification models. An empirical study on 16 different data sets and text categorization demonstrates that the proposed framework improves the performance of several commonly used supervised learning algorithms, given a large number of unlabeled examples. We also show that the performance of the proposed algorithm, SemiBoost, is comparable to the state-of-the-art semi-supervised learning algorithms.  相似文献   

19.
在图像分类的实际应用过程中,部分类别可能完全没有带标签的训练数据。零样本学习(ZSL)的目的是将带标签类别的图像特征等知识迁移到无标签的类别上,实现无标签类别的正确分类。现有方法在测试时无法显式地区分输入图像属于已知类还是未知类,很大程度上导致未知类在传统设定下的ZSL和广义设定下的ZSL(GZSL)上的预测效果相差甚远。为此,提出一种融合视觉误差与属性语义信息的方法来缓解零样本图像分类中的预测偏置问题。首先,设计一种半监督学习方式的生成对抗网络架构来获取视觉误差信息,由此预测图像是否属于已知类;然后,提出融合属性语义信息的零样本图像分类网络来实现零样本图像分类;最后,测试融合视觉误差与属性语义的零样本图像分类方法在数据集AwA2和CUB上的效果。实验结果表明,与对比模型相比,所提方法有效缓解了预测偏置问题,其调和指标H在AwA2(Animal with Attributes)上提升了31.7个百分点,在CUB(Caltech-UCSD-Birds-200-2011)上提升了8.7个百分点。  相似文献   

20.
Traditional supervised classifiers use only labeled data (features/label pairs) as the training set, while the unlabeled data is used as the testing set. In practice, it is often the case that the labeled data is hard to obtain and the unlabeled data contains the instances that belong to the predefined class but not the labeled data categories. This problem has been widely studied in recent years and the semi-supervised PU learning is an efficient solution to learn from positive and unlabeled examples. Among all the semi-supervised PU learning methods, it is hard to choose just one approach to fit all unlabeled data distribution. In this paper, a new framework is designed to integrate different semi-supervised PU learning algorithms in order to take advantage of existing methods. In essence, we propose an automatic KL-divergence learning method by utilizing the knowledge of unlabeled data distribution. Meanwhile, the experimental results show that (1) data distribution information is very helpful for the semi-supervised PU learning method; (2) the proposed framework can achieve higher precision when compared with the state-of-the-art method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号