首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《国际计算机数学杂志》2012,89(10):1509-1521
A meshless collocation method based on radial basis functions is proposed for solving the steady incompressible Navier–Stokes equations. This method has the capability of solving the governing equations using scattered nodes in the domain. We use the streamfunction formulation, and a trust-region method for solving the nonlinear problem. The no-slip boundary conditions are satisfied using a ghost node strategy. The efficiency of this method is demonstrated by solving three model problems: the driven cavity flows in square and rectangular domains and flow over a backward-facing step. The results obtained are in good agreement with benchmark solutions.  相似文献   

2.
《Graphical Models》2007,69(1):19-32
We present a novel method for solving the incompressible Navier–Stokes equations that more accurately handles arbitrary boundary conditions and sharp geometric features in the fluid domain. It uses a space filling tetrahedral mesh, which can be created using many well-known methods, to represent the fluid domain. Examples of the method’s strengths are illustrated by free surface fluid simulations and smoke simulations of flows around objects with complex geometry.  相似文献   

3.
In this work, we combine (i) NURBS-based isogeometric analysis, (ii) residual-driven turbulence modeling and iii) weak imposition of no-slip and no-penetration Dirichlet boundary conditions on unstretched meshes to compute wall-bounded turbulent flows. While the first two ingredients were shown to be successful for turbulence computations at medium-to-high Reynolds number [I. Akkerman, Y. Bazilevs, V. M. Calo, T. J. R. Hughes, S. Hulshoff, The role of continuity in residual-based variational multiscale modeling of turbulence, Comput. Mech. 41 (2008) 371–378; Y. Bazilevs, V.M. Calo, J.A. Cottrell, T.J.R. Hughes, A. Reali, G. Scovazzi, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Comput. Methods Appl. Mech. Engrg., 197 (2007) 173–201], it is the weak imposition of no-slip boundary conditions on coarse uniform meshes that maintains the good performance of the proposed methodology at higher Reynolds number [Y. Bazilevs, T.J.R. Hughes. Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. Fluids 36 (2007) 12–26; Y. Bazilevs, C. Michler, V.M. Calo, T.J.R. Hughes, Weak Dirichlet boundary conditions for wall-bounded turbulent flows. Comput. Methods Appl. Mech. Engrg. 196 (2007) 4853–4862]. These three ingredients form a basis of a possible practical strategy for computing engineering flows, somewhere between RANS and LES in complexity. We demonstrate this by solving two challenging incompressible turbulent benchmark problems: channel flow at friction-velocity Reynolds number 2003 and flow in a planar asymmetric diffuser. We observe good agreement between our calculations of mean flow quantities and both reference computations and experimental data. This lends some credence to the proposed approach, which we believe may become a viable engineering tool.  相似文献   

4.
A coupled Legendre-Laguerre spectral element method is proposed for the Stokes and Navier-Stokes equations in unbounded domains. The method combines advantages of the high accuracy of the Laguerre-spectral method for unbounded domains and the geometric flexibility of the spectral-element method. Rigorous stability and error analysis for the Stokes problem is carried out. Numerical results indicate that the proposed method is very effective for some realistic flow problems in unbounded domains, such as flows passing a circular cylinder.  相似文献   

5.
Viscous flows in domains with boundaries forming two-dimensional corners are considered. We examine the case where on each side of the corner the boundary condition for the tangential velocity is formulated in terms of stress. It is shown that computing such flows numerically by straightforwardly applying well-tested algorithms (and numerical codes based on their use, such as COMSOL Multiphysics) can lead to spurious multivaluedness and mesh-dependence in the distribution of the fluid’s pressure. The origin of this difficulty is that, near a corner formed by smooth parts of the boundary, in addition to the solution of the formulated inhomogeneous problem, there also exists an eigensolution. For obtuse corner angles this eigensolution (a) becomes dominant and (b) has a singular radial derivative of velocity at the corner. Despite the bulk pressure in the eigensolution being constant, when the derivatives of the velocity are singular, numerical errors in the velocities calculation near the corner give rise to pressure spikes, whose magnitude increases as the mesh is refined. A method is developed that uses the knowledge about the eigensolution to remove the artifacts in the pressure distribution. The method is first explained in the simple case of a Stokes flow in a corner region and then generalized for the Navier–Stokes equations applied to describe steady and unsteady free-surface flows encountered in problems of dynamic wetting.  相似文献   

6.
An entirely new approach to the large-eddy simulation (LES) of high-speed compressible turbulent flows is presented. Subgrid scale stress models are proposed that are dimensionless functions of the computational mesh size times a Reynolds stress model. This allows a DNS to go continuously to an LES and then a Reynolds-averaged Navier–Stokes (RANS) computation as the mesh becomes successively more coarse or the Reynolds number becomes much larger. Here, the level of discretization is parameterized by the nondimensional ratio of the computational mesh size to the Kolmogorov length scale. The Reynolds stress model is based on a state-of-the-art two-equation model whose enhanced performance is documented in detail in a variety of benchmark flows. It contains many of the most recent advances in compressible turbulence modeling. Applications to the high-speed aerodynamic flows of technological importance are briefly discussed.  相似文献   

7.
In this paper We consider a problem of optimal design in 2D for the wave equation with Dirichlet boundary conditions. We introduce a finite element discrete version of this problem in which the domains under consideration are polygons defined on the numerical mesh. We prove that, as the mesh size tends to zero, any limit, in the sense of the complementary-Hausdorff convergence, of discrete optimal shapes is an optimal domain for the continuous optimal design problem. We work in the functional and geometric setting introduced by V. ?veràk in which the domains under consideration are assumed to have an a priori limited number of holes. We present in detail a numerical algorithm and show the efficiency of the method through various numerical experiments.  相似文献   

8.
This paper applies the techniques of the h-p version to the boundary element method for boundary value problems on plane non-smooth domains with piecewise analytic boundary and data. The exponential rate of convergence of the boundary element Galerkin solution is obtained when a geometric mesh refinement is used near the vertices.  相似文献   

9.
In this paper, we will present efficient strategies how composite finite elements can be realized for the discretization of PDEs on domains containing small geometric details. In contrast to standard finite elements, the minimal dimension of this new class of finite element spaces is completely independent of the number of geometric details of the physical domains. Hence, it allows coarse level discretization of PDEs which can be used, e.g., preferably for multi-grid methods and homogenization of PDEs in non-periodic situations. Received: 23 September 1996 / Accepted: 23 January 1997  相似文献   

10.
Recently, we have developed multi-level boundary element methods (MLBEM) for the solution of the Laplace and Helmholtz equations that involve asymptotically decaying non-oscillatory and oscillatory singular kernels, respectively. The accuracy and efficiency of the fast boundary element methods for steady-state heat diffusion and acoustics problems have been investigated for square domains. The current work extends the MLBEM methodology to the solution of Stokes equation in more complex two-dimensional domains. The performance of the fast boundary element method for the Stokes flows is first investigated for a model problem in a unit square. Then, we consider an example problem possessing an analytical solution in a rectangular domain with 5:1 aspect ratio, and finally, we study the performance of the MLBEM algorithm in a C-shaped domain.  相似文献   

11.
12.
In this paper a novel two-dimensional lattice Boltzmann model (LBM) is developed for uniform channel flows. The axial velocity is solved from a momentum diffusion equation over the cross-sectional plane. An extrapolation boundary condition is also introduced to enhance the no-slip boundary in the momentum equation. This boundary treatment can also be applied to LBM simulations of other diffusion processes. The algorithm and boundary treatment are validated by simulations of steady Poiseuille and pulsatile Womersley flows in circular pipes. The numerical convergence and accuracy are comparable to those of existing models. Moreover, comparison with general three-dimensional lattice Boltzmann simulations demonstrates the advantages of our two-dimensional model, including lower computational resource requirements (memory and time), easier boundary treatment for arbitrary cross-sectional shapes, and no velocity constraint. These features are attractive for practical applications with uniform channel flows.  相似文献   

13.
14.
This article is devoted to the study of an incompressible viscous flow of a fluid partly enclosed in a cylindrical container with an open top surface and driven by the constant rotation of the bottom wall. Such type of flows belongs to a group of recirculating lid-driven cavity flows with geometrical axisymmetry and of the prescribed boundary conditions of Dirichlet type—no-slip on the cavity walls. The top surface of the cylindrical cavity is left open with an imposed stress-free boundary condition, while a no-slip condition with a prescribed rotational velocity is imposed on the bottom wall. The Reynolds regime corresponds to transitional flows with some incursions in the fully laminar regime. The approach taken here revealed new flow states that were investigated based on a fully three-dimensional solution of the Navier-Stokes equations for the free-surface cylindrical swirling flow, without resorting to any symmetry property unlike all other results available in the literature. Theses solutions are obtained through direct numerical simulations based on a Legendre spectral element method.  相似文献   

15.
In this paper the elastic–plastic uniform torsion analysis of composite cylindrical bars of arbitrary cross-section consisting of materials in contact, each of which can surround a finite number of inclusions, taking into account the effect of geometric nonlinearity is presented employing the boundary element method. The stress–strain relationships for the materials are assumed to be elastic–plastic–strain hardening. The incremental torque–rotation relationship is computed based on the finite displacement (finite rotation) theory, that is the transverse displacement components are expressed so as to be valid for large rotations and the longitudinal normal strain includes the second-order geometric nonlinear term often described as the “Wagner strain”. The proposed formulation does not stand on the assumption of a thin-walled structure and therefore the cross-section’s torsional rigidity is evaluated exactly without using the so-called Saint Venant’s torsional constant. The torsional rigidity of the cross-section is evaluated directly employing the primary warping function of the cross-section depending on both its shape and the progress of the plastic region. A boundary value problem with respect to the aforementioned function is formulated and solved employing a BEM approach. The influence of the second Piola–Kirchhoff normal stress component to the plastic/elastic moment ratio in uniform inelastic torsion is demonstrated.  相似文献   

16.
目的 高质量四边形网格生成是计算机辅助设计、等几何分析与图形学领域中一个富有挑战性的重要问题。针对这一问题,提出一种基于边界简化与多目标优化的高质量四边形网格生成新框架。方法 首先针对亏格非零的平面区域,提出一种将多连通区域转化为单连通区域的方法,可生成高质量的插入边界;其次,提出"可简化角度"和"可简化面积比率"两个阈值概念,从顶点夹角和顶点三角形面积入手,将给定的多边形边界简化为粗糙多边形;然后对边界简化得到的粗糙多边形进行子域分解,并确定每个子域内的网格顶点连接信息;最后提出四边形网格的均匀性和正交性度量目标函数,并通过多目标非线性优化技术确定网格内部顶点的几何位置。结果 在同样的离散边界下,本文方法与现有方法所生成的四边网格相比,所生成的四边网格顶点和单元总数目较少,网格单元质量基本类似,计算时间成本大致相同,但奇异点数目可减少70% 80%,衡量网格单元质量的比例雅克比值等相关指标均有所提高。结论 本文所提出的四边形网格生成方法能够有效减少网格中的奇异点数目,并可生成具有良好光滑性、均匀性和正交性的高质量四边形网格,非常适用于工程分析和动画仿真。  相似文献   

17.
Abstract We consider elliptic partial differential equations with Neumann boundary conditions on complicated domains. The discretization is performed by composite finite elements. The a priori error analysis typically is based on precise knowledge of the regularity of the solution. However, the constants in the regularity estimates possibly depend critically on the geometric details of the domain and the analysis of their quantitative influence is rather involved. Here, we consider a polyhedral Lipschitz domain Ω with a possibly huge number of geometric details ranging from size O(ε) to O(1). We assume that Ω is a perturbation of a simpler Lipschitz domain Ω. We prove error estimates where only the regularity of the partial differential equation on Ω is needed along with bounds on the norm of extension operators which are explicit in appropriate geometric parameters. Since composite finite elements allow a multiscale discretization of problems on complicated domains, the linear system which arises can be solved by a simple multi-grid method. We show that this method converges at an optimal rate independent of the geometric structure of the problem.  相似文献   

18.
Zhijun Tan  K.M. Lim  B.C. Khoo   《Computers & Fluids》2009,38(10):1973-1983
We present a fast immersed interface method for solving the steady Stokes flows involving the rigid boundaries. The immersed rigid boundary is represented by a set of Lagrangian control points. In order to enforce the prescribed velocity at the rigid boundary, singular forces at the rigid boundary are applied on the fluid. The forces are related to the jumps in pressure and the jumps in the derivatives of both pressure and velocity, and are approximated using the cubic splines. The strength of singular forces is determined by solving a small system of equations via the GMRES method. The Stokes equations are discretized using finite difference method with the incorporation of jump conditions on a staggered Cartesian grid and solved by the conjugate gradient Uzawa-type method. Numerical results demonstrate the accuracy and ability of the proposed method to simulate Stokes flows on irregular domains.  相似文献   

19.
The modeling and the numerical representation of the contact line between a two-phase interface and a solid surface are still open problems from the physical, mathematical and numerical point of view. This paper deals with the numerical simulation of the spreading of a single droplet impacting over horizontal dry surfaces. A new variational approach to study the droplet spreading is presented by coupling an interface front-tracking algorithm to the single-fluid finite element formulation of the incompressible Navier-Stokes equations which are solved on a fixed mesh. Standard no-slip boundary conditions near the contact line lead to a singular behavior that in the variational approach is removed by introducing a generalized boundary condition which is the sum of a dissipation term and the dynamical contact angle law. By changing the intensity of the dissipation a large number of boundary conditions around the contact point are modeled, ranging from no-slip to free-slip. Since the impact is over horizontal surfaces, axisymmetric solutions are investigated with high mesh resolutions. A very precise implementation of the capillary force with a volumetric extension of the curvature has been adopted. We have considered a Lagrangian front-tracking method to advect the interface. The marker representing the contact point is simply advected by the computed velocity at the boundary without the need to extrapolate the vector field from the interior and to enforce locally mass-conservation. The model has been tested for the impact and the spreading of a droplet on solid substrates with a different wettability at low Reynolds numbers where the inertial, the viscous and the surface tension forces are all important. A number of droplet impacts with different outcomes, ranging from simple deposition to partial and complete rebound, have been reproduced. However, our simulations indicate that the formulas suggested in the literature for the dynamical contact angle should be modified to simulate a broad class of experiments.  相似文献   

20.
Jun Cao 《Computers & Fluids》2005,34(8):991-1024
In this paper, we discuss how to improve the adaptive finite element simulation of compressible Navier-Stokes flow via a posteriori error estimate analysis. We use the moving space-time finite element method to globally discretize the time-dependent Navier-Stokes equations on a series of adapted meshes. The generalized compressible Stokes problem, which is the Stokes problem in its most generalized form, is presented and discussed. On the basis of the a posteriori error estimator for the generalized compressible Stokes problem, a numerical framework of a posteriori error estimation is established corresponding to the case of compressible Navier-Stokes equations. Guided by the a posteriori errors estimation, a combination of different mesh adaptive schemes involving simultaneous refinement/unrefinement and point-moving are applied to control the finite element mesh quality. Finally, a series of numerical experiments will be performed involving the compressible Stokes and Navier-Stokes flows around different aerodynamic shapes to prove the validity of our mesh adaptive algorithms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号