首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical stability, mechanical behaviour and biocompatibility in body fluids and tissues are the basic requirements for successful application of implant materials in bone fractures and replacements. Corrosion is one of the major processes affecting the life and service of orthopaedic devices made of metals and alloys used as implants in the body. Among the metals and alloys known, stainless steels (SS), Co-Cr alloys and titanium and its alloys are the most widely used for the making of biodevices for extended life in human body. Incidences of failure of stainless steel implant devices reveal the occurrence of significant localised corroding viz., pitting and crevice corrosion. Titanium forms a stable TiO2 film which can release titanium particles under wear into the body environment. To reduce corrosion and achieve better biocompatibility, bulk alloying of stainless steels with titanium and nitrogen, surface alloying by ion implantation of stainless steels and titanium and its alloys, and surface modification of stainless steel with bioceramic coatings are considered potential methods for improving the performance of orthopaedic devices. This review discusses these issues in depth and examines emerging directions.  相似文献   

2.
This work examines NiTi foams that have been treated using a new oxidation treatment for obtaining Ni-free surfaces that could allow the ingrowth of living tissue, thereby increasing the mechanical anchorage of implants. A significant increase in the real surface area of these materials can decrease corrosion resistance and favour the release of Ni. This chemical degradation can induce allergic reactions or toxicity in the surrounding tissues. This study determines the porosity, surface characteristics, phase transformation, mechanical properties, corrosion behaviour and Ni release into the simulated body fluid medium of foams treated by a new surface oxidation treatment that produces Ni-free surfaces. These foams have pores in an appropriate range of sizes and interconnectivity, and thus their morphology is similar to that of bone. Their mechanical properties are biomechanically compatible with bone. The titanium oxide on the surface significantly improves corrosion resistance and decreases nickel ion release, while barely affecting transformation temperatures.  相似文献   

3.
The surfaces of five commercially available titanium implants (Brånemark Nobel Biocare, 3i ICE, 3i OSSEOTITE, ITI-TPS, and ITI-SLA) were compared by scanning electron microscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectroscopy. All five implant types were screw-shaped and fabricated from commercially pure (cp) titanium, but their surface properties differed both as regards surface morphology and surface chemical composition. The macro- and microstructure of the implant surfaces were investigated by scanning electron microscopy. The surfaces chemical composition was determined using the surface-sensitive analytical techniques of X-ray photoelectron spectroscopy and time-of-flight secondary ion spectrometry. Surface topographies were found to reflect the type of mechanical/chemical fabrication procedures applied by the manufacturers. The titanium oxide (passive) layer thickness was similar (5–6 nm) and typical for oxide films grown at or near room temperature. A variety of elements and chemical compounds not related to the metal composition were found on some implant types. They ranged from inorganic material such as sodium chloride to specific organic compounds believed to be due to contamination during fabrication or storage. The experimental findings are believed to make a contribution to a better understanding of the interplay between industrial fabrication procedure and physico-chemical implant surface properties.  相似文献   

4.
Titanium(Ti) and its alloys are used extensively in orthopedic implants because of their excellent biocompatibility,mechanical properties and corrosion resistance. However,titanium-based implant materials face many severe complications,such as implant loosening due to poor osseointegration and bacterial infections,which may lead to implant failure. Hence,preparing a biomaterial surface,which enhances the interactions with host cells and inhibits bacterial adhesion,may be an optimal strategy to reduce the incidence of implant failure. This study aims to improve osseointegration and confer antibacterial properties on Ti through a combination of two surface modifications including nanostructuring generated by acid etching and ultraviolet(UV) light treatment.Our results showed that without UV treatment,the acid etching treatment of Ti surface was effective at both improving the adhesion of bone mesenchymal stem cells(BMSCs) and increasing bacterial adhesion. A further UV treatment of the acid-etched surface however,not only significantly improved the cell adhesion but also inhibited bacterial adhesion. The acid-etched nanostructured titanium with UV treatment also showed a significant enhancement on cell proliferation,alkaline phosphatase(ALP) activity and mineralization. These results suggest that such nanostructured materials with UV treatment can be expected to have a good potential in orthopedic applications.  相似文献   

5.
Permanent metal implants are widely used in human medical treatments and orthopedics, for example as hip joint replacements. They are commonly made of titanium alloys and beyond the optimization of this established material, it is also essential to explore alternative implant materials in view of improved osseointegration. The aim of our study was to characterize the implant performance of zirconium in comparison to titanium implants. Zirconium implants have been characterized in a previous study concerning material properties and surface characteristics in vitro, such as oxide layer thickness and surface roughness. In the present study, we compare bone material quality around zirconium and titanium implants in terms of osseointegration and therefore characterized bone material properties in a rat model using a multi-method approach. We used light and electron microscopy, micro Raman spectroscopy, micro X-ray fluorescence and X-ray scattering techniques to investigate the osseointegration in terms of compositional and structural properties of the newly formed bone. Regarding the mineralization level, the mineral composition, and the alignment and order of the mineral particles, our results show that the maturity of the newly formed bone after 8 weeks of implantation is already very high. In conclusion, the bone material quality obtained for zirconium implants is at least as good as for titanium. It seems that the zirconium implants can be a good candidate for using as permanent metal prosthesis for orthopedic treatments.  相似文献   

6.
Titanium(Ti)and titanium alloys have become widely used as biomedical materials in orthopedics because of their good machinability,corrosion resistance,low elastic modulus and excellent biocom-patibility.However,when Ti-based implants are used for bone repair and replacement,they are easy to cause bacteria adhesion and aggregation,which leads to postoperative infection.In addition,Ti and its alloys,as bio-inert materials,cannot induce desirable tissue responses such as osseointegration after implantation,which will eventually lead to implant loosening.Postoperative bacterial infection and lack of osseointegration directly lead to the failure of implantation surgery and are not conductive to the long-term service of titanium-based implants.Recently,researchers have made many attempts to focus on the surface modification of multifunctional Ti-based implants to endow them with both antibacterial activity and simultaneous osteoinductive property.In this review,we primarily highlighted the recent progresses in the surface design of Ti implants with both antimicrobial and osteoinductive properties for orthopedic applications.First,the challenges for treating implant-associated infections were briefly introduced such as the emergence of antibiotic resistance,the formation of biofilms,and the construction of cell-selective surfaces.Some of the essential fundamentals were concisely introduced to address these emerging challenges.Next,we intended to elaborate the potential strategies of multifunctional surface design to endow good osseointegration for antibacterial Ti implants and highlighted the recent advances of the implants.We hope that this review will provide theoretical basis and technical support for the development of new Ti implant with antibacterial and osteogenic functions.  相似文献   

7.
REVIEW Bioactive metals: preparation and properties   总被引:15,自引:0,他引:15  
Some ceramics, such as Bioglass, sintered hydroxyapatite, and glass-ceramic A-W, spontaneously form a bone-like apatite layer on their surface in the living body, and bond to bone through the apatite layer. These materials are called bioactive ceramics, and are clinically important for use as bone-repairing materials. However, they cannot be used at high-load sites, such as is found in femoral and tibial bones, because their fracture toughness values are not as high as that of human cortical bone. Titanium metal and its alloys have high fracture toughness, and form a sodium titanate layer on its surface when soaked in a 5 M-NaOH solution at 60 degrees C for 24 h, followed by a heat treatment at 600 degrees C for 1 h. On moving toward the metal interior, the sodium titanate layer gradually changes into the pure metal within a distance of 1 microm from the surface. The mechanical strength of the titanium metal or a titanium alloy is not adversely affected by these chemical and thermal treatments. The titanium metal and its alloys resulting from the above treatment can release Na+ ions from its surface into a surrounding body fluid via an ion exchange reaction with H3O+ ions, resulting in many Ti-OH groups forming on its surface. These Ti-OH groups initially combine with Ca2+ ions to form amorphous calcium titanate in the body environment, and later the calcium titanate combines with phosphate ions to form amorphous calcium phosphate. The amorphous calcium phosphate eventually transforms into bone-like apatite, and by this process the titanium metals are soon tightly bonded to the surrounding living bone through the bone-like apatite layer. The treated metals have already been subjected to clinical trials for applications in artificial total hip joints. Metallic tantalum has also been found to bond to living bone after it has been subjected to the NaOH and heat treatment to form a sodium tantalate layer on its surface.  相似文献   

8.
Oxidized implants and their influence on the bone response   总被引:2,自引:0,他引:2  
Surface oxide properties are regarded to be of great importance in establishing successful osseointegration of titanium implants. Despite a large number of theoretical questions on the precise role of oxide properties of titanium implants, current knowledge obtained from in vivo studies is lacking. The present study is designed to address two aspects. The first is to verify whether oxide properties of titanium implants indeed influence the in vivo bone tissue responses. The second, is to investigate what oxide properties underline such bone tissue responses. For these purposes, screw-shaped/turned implants have been prepared by electrochemical oxidation methods, resulting in a wide range of oxide properties in terms of: (i) oxide thickness ranging from 200 to 1000 nm, (ii) the surface morphology of barrier and porous oxide film structures, (iii) micro pore configuration - pore sizes<8 microm by length, about 1.27 microm2 to 2.1 microm2 by area and porosity of about 12.7-24.4%, (iv) the crystal structures of amorphous, anatase and mixtures of anatase and rutile type, (v) the chemical compositions of TiO2 and finally, (vi) surface roughness of 0.96-1.03 microm (Sa). These implant oxide properties were divided into test implant samples of Group II, III, IV and V. Control samples (Group I) were turned commercially pure titanium implants. Quantitative bone tissue responses were evaluated biomechanically by resonance frequency analysis (RFA) and removal torque (RT) test. Quantitative histomorphometric analyses and qualitative enzyme histochemical detection of alkaline (ALP) and acidic phosphatase (ACP) activities were investigated on cut and ground sections after six weeks of implant insertion in rabbit tibia. In essence, from the biomechanical and quantitative histomorphometric measurements we concluded that oxide properties of titanium implants, i.e. the oxide thickness, the microporous structure, and the crystallinity significantly influence the bone tissue response. At this stage, however, it is not clear whether oxide properties influence the bone tissue response separately or synergistically.  相似文献   

9.
It is known that surface roughness and chemical composition of the titanium surface influence the osseointegration of titanium implants. Most commercial dental implants offer a shot-blasted rough surface. It is also known that apatite layers coating the surface of titanium implants improve bone response, but the adhesion of the layer to the substrate poses some problems.In this study the roughness and adhesion strength to a titanium dental implant surface of an apatite layer deposited via wet chemistry after a thermochemical treatment were compared with those of plasma-sprayed apatite layers and machined titanium surfaces. Different surface conditions have been studied: (a) as-received machined dental implant surface; (b) grit-blasted titanium surface; (c) grit-blasted and thermochemically-treated titanium surface; (d) titanium surfaces coated with plasma-sprayed apatite. The morphology and roughness of the samples were measured and compared. The adhesion of the apatite layers to the titanium was compared by means of a scratch test.Measured roughness showed that the deposition of an apatite layer did not affect roughness but plasma-sprayed apatite produced a decrease on roughness values when compared to control samples. Both roughness and adhesion strength of the deposited apatite layer to the titanium substrate were higher than those of the plasma-sprayed apatite.  相似文献   

10.
医用钛合金表面改性研究进展   总被引:4,自引:1,他引:4  
黄伟九  李兆峰 《材料导报》2006,20(Z2):369-372
钛合金作为人体硬组织替代物和修复物的首选材料在临床上得到广泛的应用.分析了目前医用钛合金存在的主要问题:生物活性、耐磨性和耐腐蚀性有待进一步提高,指出表面改性是改善上述问题的有效途径;综述了人体植入钛合金表面改性的研究进展,并展望了钛合金表面改性的发展趋势.  相似文献   

11.
Titanium and its alloys are often used as substrates for dental implants due to their excellent mechanical properties and good biocompatibility. However, their ability to bind to neighboring bone is limited due to the lack of biological activity. At the same time, they show poor antibacterial ability which can easily cause bacterial infection and chronic inflammation, eventually resulting in implant failure. The preparation of composite hydroxyapatite coatings with antibacterial ability can effectively figure out these concerns. In this review, the research status and development trends of antibacterial hydroxyapatite coatings constructed on titanium and its alloys are analyzed and reviewed. This review may provide valuable reference for the preparation and application of high-performance and multi-functional dental implant coatings in the future.  相似文献   

12.
The role of surface properties (chemical and structural) for the interaction between biomaterials and tissue is not yet understood. In the present study, implants made of titanium, zirconium (transition metals with surface oxides) and gold (metallic surface) were inserted into the rabbit tibia. Light microscopic (LM) morphometry showed that after 1 and 6 mo the gold implants had less amount of bone within the threads and a lower degree of bone-implant contact than the titanium and zirconium implants, which did not differ from each other. These quantitative differences were supported by LM and ultrastructural observations of the interface. The ultrastructural observations in addition demonstrated that the layer of non-collagenous amorphous material located between the implant and the calcified bone was appreciably thicker around zirconium than around titanium implants. The factors potentially responsible for the observed morphological differences in the bone around the different material surfaces are discussed.  相似文献   

13.
The surface properties of titanium alloy implants for improved osseointegration in orthopaedic and dental surgery have been modified by many technologies. Hydroxyapatite coatings with a facultative integration of growth factors deposited by plasma spraying showed improved osseointegration. Our approach in order to enhance osseointegration was carried out by a surface modification method of titanium alloy implants called plasma chemical oxidation (PCO). PCO is an electrochemical procedure that converts the nm‐thin natural occurring titanium‐oxide layer on an implant to a 5 µm thick ceramic coating (TiOB‐surface). Bioactive TiOB‐surfaces have a porous microstructure and were loaded with calcium and phosphorous, while bioinert TiOB‐surfaces with less calcium and phosphorous loadings are smooth. A rat tibial model with bilateral placement of titanium alloy implants was employed to analyze the bone response to TiOB‐surfaces in vivo. 64 rats were randomly assigned to four groups of implants: (i) pure titanium alloy (control), ii) titanium alloy, type III anodization, (iii) bioinert TiOB‐surface, and (iv) bioactive TiOB‐surface. Mechanical fixation was evaluated by pull out tests at 3 and 8 weeks. The bioactive TiOB‐surface showed significantly increased shear strength at 8 weeks compared to all other groups.  相似文献   

14.
Titanium and its alloys are commonly used in almost all disciplines of medicine because of their sufficient biocompatibility and meeting of mechanical requirements. However, dense metallic biomaterials represent only an interfacial connection with host tissue, may develop stress shielding which causes ingrowth of the fibrous tissue, and are prone to microbial adhesion and development of biomaterial associated infections. Therefore, development of a new, porous titanium biomaterial is proposed to improve an implant's interconnection with bone, provide better stabilization, and reduce the risk of the loss of the implant. In this review, recent findings in porous titanium biomaterials engineering are discussed, including the structural and strengthening aspects of titanium alloys. The porosity and design of porous structures, as well as the optimization process are also described. An extensive part of this section is dedicated to manufacturing processes. The next section of the review is devoted to osseointegration of porous implants and surface treatment processes, whose purpose are antibacterial activity or local drug delivery. Summarizing the article, some future predictions have been presented.
  相似文献   

15.
Titanium and its alloys form a thin amorphous protective surface oxide when exposed to an oxygen environment. The properties of this oxide layer are thought to be responsible for titanium and its alloys biocompatibility, chemical inertness, and corrosion resistance. Surface oxide crystallinity and pore size are regarded to be two of the more important properties in establishing successful osseointegration. Anodization is an electrochemical method of surface modification used for colorization marking and improved bioactivity on orthopedic and dental titanium implants. Research on titanium anodization using sulphuric acid has been reported in the literature as being primarily conducted in molarity levels 3 M and less using either galvanostatic or potentiostatic methods. A wide range of pore diameters ranging from a few nanometers up to 10 μm have been shown to form in sulfuric acid electrolytes using the potentiostatic and galvanostatic methods. Nano sized pores have been shown to be beneficial for bone cell attachment and proliferation. The purpose of the present research was to investigate oxide crystallinity and pore formation during titanium anodization using a pulsed DC waveform in a series of sulfuric acid electrolytes ranging from 0.5 to 12 M. Anodizing titanium in increasing sulfuric acid molarities showed a trend of increasing transformations of the amorphous natural forming oxide to the crystalline phases of anatase and rutile. The pulsed DC waveform was shown to produce pores with a size range from ≤0.01 to 1 μm2. The pore size distributions produced may be beneficial for bone cell attachment and proliferation.  相似文献   

16.
医用钛合金及其表面改性   总被引:12,自引:0,他引:12  
目前钛合金被广泛应用于医学领域,如矫形用种植体。简要综述了新型医用钛合金的开发以及钛合金表面改性提高其表面生物活性和耐磨性能的研究进展。  相似文献   

17.
Titanium and its alloys are widely used in load-bearing bioinert implants. Bioactive glasses (BAGs) form a chemical bond with bone, but they are not suitable for load-bearing applications. Creating a BAG coating on a titanium implant could combine the best properties of both materials. The results tend to be poor when conventional firing methods are applied to coat titanium with BAG. A local application of heat to melt the glass can be achieved by a CO2 laser. A new method is introduced to create BAG coatings on titanium locally in a controlled manner, with a focused CO2 laser beam. The coatings produced by this method precipitate calcium phosphate in vitro. Processing parameters (number of coated layers, laser power, and processing atmosphere) providing a firm attachment of the glass and good in vitro bioactivity were identified. XRD analysis showed no crystallisation of the glass due to processing with the laser. EDXA indicated the formation of a calcium phosphate layer, which FTIR suggested to be a hydroxyapatite. The results show CO2 laser processing to be a promising technique for the manufacture of 30-40 microm BAG coatings on titanium.  相似文献   

18.
硬组织植入材料表/界面研究进展   总被引:2,自引:0,他引:2  
硬组织植入材料表面和界面研究对改善和提高植入体性能及使用效果具有重要意义. 本文从硬组织植入体的发展规律着手, 综述了硬组织植入材料表面和界面研究的发展和趋势, 并着重探讨了目前临床应用最为广泛的硬组织材料体系?钛及其合金的表面改性技术和研究动态. 通过对钛及其合金进行表面改性, 提高其骨再生能力和抗菌性是近年来的研究热点. 表面负载生长因子和加涂生物活性涂层是提高钛合金植入体骨再生能力的常见手段, 装载抗菌药物和负载抗菌元素是改善钛合金植入体抗菌性能的有效方法. 随着纳米和生物技术的发展以及表面改性技术的革新, 通过复合表面改性获得兼具生物活性和抗菌性的钛合金植入体是硬组织植入体的重要发展方向.  相似文献   

19.
The development of the tissue surrounding an implanted material is anticipated to be regulated by the biological factors in the interface as well as the physicochemical properties of the implant material. In the present study light microscopic morphometry and transmission electron microscopy were used to evaluate the distribution of cells adjacent to the implant surface of different implant designs (hollow and solid implants) and materials (titanium and polytetrafluoroethylene). An increased number of leukocytes, predominantly PMN, was retrieved from the exudate inside hollow implants 1 and 9 days after surgery. In contrast, the increased cellularity in the soft tissue around the hollow implants was mainly due to an increased number of monocytes/macrophages and fibroblasts. The presence of a fluid space around both hollow and solid implants was revealed by the use of an electropolishing technique and ground sections. In the fluid space around solid titanium the concentration of leukocytes and the proportion of PMN decreased between 1 and 7 days. After 1 day the majority of leukocytes were freely suspended in the fluid and were rarely directly apposed to the implant surface. A majority of the monocytes/macrophages present in the fluid space after 7 days were attached to the fibrin matrix at the border between the fluid space and the reorganized tissue. Our studies demonstrate that hollow implants promote the influx and a persistence of PMN in the interior of the implant in comparison with the tissue surrounding the hollow and solid implants. Furthermore, during the first week after implantation inflammatory cells are not preferentially distributed directly on the titanium implant surface.  相似文献   

20.
The primary aim of this study was to compare different surface treatments used for bioactivation of pure titanium surfaces––thermal, alkali treatment and spark oxidation, and to assess their suitability as treatments for Ni–Ti alloys. This was considered by examining the surface properties, calcium phosphate precipitation from a physiological solution, and nickel ion release. Additionally, changes in the transformation temperature were measured for thermally treated samples. These studies indicate that the native surface of Ni–Ti alloy is highly bioactive when assessing the precipitation of calcium phosphates from Hank’s solution. Low temperature heat treatments also produced promising surfaces while high temperature treatment resulted in a very low rate of Ca and P precipitation. Alkali treatment and spark oxidation resulted in some bioactivity. Nickel ion release was greatest for alkali treated and sparks oxidized samples, and the rate of its release from these two samples was on the verge of daily safe dose for adolescent human. The other analyzed samples revealed very low rates of nickel ion release. Heat treatment at 400°C resulted in significant increase in the transformation temperatures, and a further increase of the treatment temperature up to 600°C caused a drop of the transformation temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号