首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Image guided computational fluid dynamics is attracting increasing attention as a tool for refining in vivo flow measurements or predicting the outcome of different surgical scenarios. Sharp interface Cartesian/Immersed-Boundary methods constitute an attractive option for handling complex in vivo geometries but their capability to carry out fine-mesh simulations in the branching, multi-vessel configurations typically encountered in cardiovascular anatomies or pulmonary airways has yet to be demonstrated. A major computational challenge stems from the fact that when such a complex geometry is immersed in a rectangular Cartesian box the excessively large number of grid nodes in the exterior of the flow domain imposes an unnecessary burden on both memory and computational overhead of the Cartesian solver without enhancing the numerical resolution in the region of interest. For many anatomies, this added burden could be large enough to render comprehensive mesh refinement studies impossible. To remedy this situation, we recast the original structured Cartesian formulation of Gilmanov and Sotiropoulos [Gilmanov A, Sotiropoulos F. A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J Comput Phys 2005;207(2):457–92] into an unstructured Cartesian grid layout. This simple yet powerful approach retains the simplicity and computational efficiency of a Cartesian grid solver, while drastically reducing its memory footprint. The method is applied to carry out systematic mesh refinement studies for several internal flow problems ranging in complexity from flow in a 90° pipe bend to flow in an actual, patient-specific anatomy reconstructed from magnetic resonance images. Finally, we tackle the challenging clinical scenario of a single-ventricle patient with severe arterio-venous malformations, seeking to provide a fluid dynamics prospective on a clinical problem and suggestions for procedure improvements. Results from these simulations demonstrate very complex cardiovascular flow dynamics and underscore the need for high-resolution simulations prior to drawing any clinical recommendations.  相似文献   

2.
3.
This paper presents the development and applications of the finite element software, NASAB, which can be used for linear, geometrically nonlinear, and materially nonlinear analyses of structure and nonlinear aerostatic stability analysis of cable-supported bridges. The software program consists of two main parts: a programming part and a computational part. The windows programming part written in FORTRAN90 was designed mainly to present the NASAB software in a user-friendly environment. The computational part was written in FORTRAN77. The use of FORTRAN77 is to effectively take advantage of existing codes, thus speeding up code design and implementation. The usefulness of FORTRAN programming language to develop a user-friendly interface including pre-processing and post-processing has been demonstrated by the present version of the software.  相似文献   

4.
Mechanically-driven systems often contain both fast and slowrotating parts. The fastest moving parts determine the simulation timestep size of such systems, which often leads to unacceptable simulationtimes. By separating the model in a slow geometrically nonlinear partand a fast geometrical linear part, simulation times become reasonable.The paper describes how the dynamic influence of the fast rotating partson the slowly moving parts can be derived. A special finite element,modeling the interface between the fast and slow moving parts, isdescribed. An application is presented.  相似文献   

5.
6.
In contrast to classical partial differential equation models, the recently developed peridynamic nonlocal continuum model for solid mechanics is an integro-differential equation that does not involve spatial derivatives of the displacement field. As a result, the peridynamic model admits solutions having jump discontinuities so that it has been successfully applied to fracture problems. The peridynamic model features a horizon which is a length scale that determines the extent of the nonlocal interactions. Based on a variational formulation, continuous and discontinuous Galerkin finite element methods are developed for the peridynamic model. Discontinuous discretizations are conforming for the model without the need to account for fluxes across element edges. Through a series of simple, one-dimensional computational experiments, we investigate the convergence behavior of the finite element approximations and compare the results with theoretical estimates. One issue addressed is the effect of the relative sizes of the horizon and the grid. For problems with smooth solutions, we find that continuous and discontinuous piecewise-linear approximations result in the same accuracy as that obtained by continuous piecewise-linear approximations for classical models. Piecewise-constant approximations are less robust and require the grid size to be small with respect to the horizon. We then study problems having solutions containing jump discontinuities for which we find that continuous approximations are not appropriate whereas discontinuous approximations can result in the same convergence behavior as that seen for smooth solutions. In case a grid point is placed at the locations of the jump discontinuities, such results are directly obtained. In the general case, we show that such results can be obtained through a simple, automated, abrupt, local refinement of elements containing the discontinuity. In order to reduce the number of degrees of freedom while preserving accuracy, we also briefly consider a hybrid discretization which combines continuous discretizations in regions where the solution is smooth with discontinuous discretizations in small regions surrounding the jump discontinuities.  相似文献   

7.
Flow of non-Newtonian fluid in saturated porous media can be described by the continuity equation and the generalized Darcy law. Here we discuss the efficient solution of the resulting second order nonlinear elliptic equation. The equation is discretized by the finite volume method on a cell-centered grid. Local adaptive refinement of the grid is introduced in order to reduce the number of unknowns. We develop a special implementation, that allows us to perform unstructured local refinement in conjunction with the finite volume discretization. Two residual based error indicators are exploited in the adaptive refinement criterion. Second order accurate discretization of the fluxes on the interfaces between refined and non-refined subdomains, as well as on the boundaries with Dirichlet boundary condition, are presented here as an essential part of an accurate and efficient algorithm. A nonlinear full approximation storage multigrid algorithm is developed especially for the above described composite (coarse plus locally refined) grid approach. In particular, second order approximation of the fluxes around interfaces is a result of a quadratic approximation of slave nodes in the multigrid-adaptive refinement (MG-AR) algorithm. Results from numerical solution of various academic and practice-induced problems are presented and the performance of the solver is discussed.  相似文献   

8.
This paper is devoted to the numerical solution of phase-change problems in two dimensions. The technique of finite elements is employed. The discretization is carried out using linear isoparametric elements and special attention is given to the accurate integration of functions presenting discontinuities at arbitrarily curved interfaces. This type of function arises in a natural way when dealing with phase-change problems because the enthalpy attains a discontinuity at the phase change temperature. To integrate the discontinuous functions in the phase-changing elements a second mapping is performed from the master element onto a new one for which the interface iis a straight line. The integrals are calculated using the Gaussian technique applied to each part of the divided element, which may be triangular or quadrilateral. The discontinuous integration technique improves the behaviour of the numerical method avoiding any possible loss of latent heat due to an inaccurate evaluation of the residual vector. Some important aspects of the solution of the nonlinear system of equations are discussed and several numerical examples are presented together with the details of the computational implementation of the algorithm.  相似文献   

9.
A finite element method is presented for the analysis of nonlinear harmonic oscillations of axisymmetric shells. More specifically, a computational approach is described which can be used to calculate the constants which arise due to the geometrically nonlinear effects in the amplitudefrequency equations for shells.  相似文献   

10.
As computer simulation increasingly supports engineering design, the requirement for a computer software environment providing an integration platform for computational engineering software increases. A key component of an integrated environment is the use of computational engineering to assist and support solutions for complex design. In the present paper, an integrated software environment is demonstrated for multi-disciplinary computational modeling of structural and geotechnical problems. The SUT-DAM is designed in both popularity and functionality with the development of user-friendly pre- and post-processing software. Pre-processing software is used to create the model, generate an appropriate finite element grid, apply the appropriate boundary conditions, and view the total model. Post-processing provides visualization of the computed results. In SUT-DAM, a numerical model is developed based on a Lagrangian finite element formulation for large deformation dynamic analysis of saturated and unsaturated soils. An adaptive FEM strategy is used into the large displacement finite element formulation by employing an error estimator, adaptive mesh refinement, and data transfer operator. This consists in defining new appropriate finite element mesh within the updated, deformed geometry and interpolating (mapping) the pertinent variables from one mesh to another in order to continue the analysis. The SUT-DAM supports different yield criteria, including classical and advanced constitutive models, such as the Pastor–Zienkiewicz and cap plasticity models. The paper presents details of the environment and includes several examples of the integration of application software.  相似文献   

11.
基于网格光顺的区域自动划分算法   总被引:1,自引:0,他引:1  
胡久乡 《计算机学报》1999,22(12):1272-1275
提出了一种用于有限元网格光顺的区域划分算法。该算法将生成的网格划分为若干个子区域,以便分配到多处理器上。该算法具有通用性好,任务分配平衡,子区域交接结点数目少,长宽适当等优点。  相似文献   

12.
13.
A computational methodology for the simulation of the transient aeroelastic response of an unrestrained and flexible aircraft during high-G maneuvers is presented. The key components of this methodology are: (a) a three-field formulation for coupled fluid/structure interaction problems; (b) a second-order time-accurate and geometrically conservative flow solver for CFD computations on unstructured dynamic meshes; (c) a corotational finite element method for the solution of geometrically nonlinear and unrestrained structural dynamics problems; (d) a robust method for updating an unrestrained and unstructured moving fluid mesh; and (e) a second-order time-accurate staggered algorithm for time-integrating the coupled fluid/structure semi-discrete equations of motion. This computational methodology is illustrated with the simulation on a parallel processor of several three-dimensional high-G pullup maneuvers of the Langley Fighter in the transonic regime, using a detailed finite element aeroelastic model.  相似文献   

14.
This work presents a contribution on the numerical modelling capabilities for the simulation of fluid flow and heat transfer in cellular solids – in particular we focus on open cell aluminium foams. Rather than applying one of the classical academical or commercial numerical finite volume (FV), finite difference (FD) or finite element (FE) interface tracking methods, we base our models on an interface capturing phase field method (Nestler, 2005). A coupled diffuse interface lattice Boltzmann fluid flow solver (Ettrich, 2014) and a diffuse interface heat transfer approach (Ettrich et al., 2014) are combined in view of dealing with even more convoluted geometries, incorporating the dynamics of interfaces and complex multiphysics applications. Numerical results for the combined fluid flow and heat transfer simulations in open cell metal foams are in very good agreement with experimental data (Ettrich and Martens, 2012; Ettrich et al., 2012).  相似文献   

15.
Level set methods [Osher and Sethian. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J. Comput. Phys. 79 (1988) 12] have proved very successful for interface tracking in many different areas of computational science. However, current level set methods are limited by a poor balance between computational efficiency and storage requirements. Tree-based methods have relatively slow access times, whereas narrow band schemes lead to very large memory footprints for high resolution interfaces. In this paper we present a level set scheme for which both computational complexity and storage requirements scale with the size of the interface. Our novel level set data structure and algorithms are fast, cache efficient and allow for a very low memory footprint when representing high resolution level sets. We use a time-dependent and interface adapting grid dubbed the “Dynamic Tubular Grid” or DT-Grid. Additionally, it has been optimized for advanced finite difference schemes currently employed in accurate level set computations. As a key feature of the DT-Grid, the associated interface propagations are not limited to any computational box and can expand freely. We present several numerical evaluations, including a level set simulation on a grid with an effective resolution of 10243  相似文献   

16.
A discrete formulation for elastic solids with damaging interfaces   总被引:2,自引:0,他引:2  
An elastic solid with embedded interfaces, loci of possible displacement discontinuities, is considered here. Decohesion and quasi-brittle fracture processes are simulated by making use of softening interface laws which relate tractions to displacements jumps. A discrete formulation in terms of interface variables only, is obtained. The space discretization is carried out by means of a mixed finite element approach in which all interface variables are modelled. Study of uniqueness of the rate problem formulated in terms of interface variables and of stability of the equilibrium states is presented. Some examples are shown in order to clarify the formulation.  相似文献   

17.
An approach to improve the geometrical representation of surfaces with the eXtended Finite Element Method is proposed. Surfaces are implicitly represented using the level set method. The finite element approximation is enriched by additional functions through the notion of partition of unity, to track material interfaces. Optimal rate of convergence is achieved with curved geometries, using linear elements and linear level set in elements. In order to accelerate the convergence, the order of approximation shape functions is increased, while keeping the same computational mesh. The level set is represented on a finer sub-mesh than the finite element mesh. A special attention to integration procedure is necessary. A new enrichment function is introduced to represent the behavior of curved material interfaces. Numerical examples including free surfaces and material interfaces in 2-D linear elasticity are presented to study convergence rates.  相似文献   

18.
In this paper, the usefulness of modified Newton methods for solving certain minimization problems arising in nonlinear finite element analysis is investigated. The application considered is nonlinear elasticity, in particular geometrically nonlinear shells. On a test problem, it is demonstrated that a particular implementation of a modified Newton method using both descent directions and directions of negative curvature is able to identify a minimizer, whereas an unmodified Newton method and modified Newton methods using only descent directions fail to converge to the minimizer. The use of modified Newton methods is suggested as a useful complement to the present continuation methods used for nonlinear finite element analysis.  相似文献   

19.
We propose a simple modification of standard weighted essentially non-oscillatory (WENO) finite volume methods for Cartesian grids, which retains the full spatial order of accuracy of the one-dimensional discretization when applied to nonlinear multidimensional systems of conservation laws. We derive formulas, which allow us to compute high-order accurate point values of the conserved quantities at grid cell interfaces. Using those point values, we can compute a high-order flux at the center of a grid cell interface. Finally, we use those point values to compute high-order accurate averaged fluxes at cell interfaces as needed by a finite volume method. The method is described in detail for the two-dimensional Euler equations of gas dynamics. An extension to the three-dimensional case as well as to other nonlinear systems of conservation laws in divergence form is straightforward. Furthermore, similar ideas can be used to improve the accuracy of WENO type methods for hyperbolic systems which are not in divergence form. Several test computations confirm the high-order accuracy for smooth nonlinear problems.  相似文献   

20.
This article presents an overview and recent progress of the extended finite element method X-FEM in the analysis of crack growth modeling. It summarizes the important milestones achieved by the finite element community in the arena of computational fracture mechanics. The methodology of X-FEM, different from that of the classical finite element method, presents a very particular interest since it does not force the discontinuities to be in conformity with the borders. It makes possible the accurate solution of engineering problems in complex domains, which may be practically impossible to solve using the classical finite element method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号