首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Microstructure and mechanical properties of a new β high strength Ti–3.5Al–5Mo–6V–3Cr–2Sn–0.5Fe titanium alloy were investigated in this paper. Both the α/β and β solution treatment and subsequent aging at temperatures ranging from 440 °C to 560 °C for 8 h were introduced to investigate the relationship between microstructures and properties. Microstructure observation of α/β solution treatment plus aging condition shows that the grain size is only few microns due to the pinning effect of primary α phase. The β solution treatment leads to coarser β grain size and the least stable matrix. The size and volume fraction of secondary α are very sensitive to temperature and strongly affected the strength of the alloy. When solution treated at 775 °C plus aged at 440 °C, the smallest size (0.028 μm in width) of secondary α and greatest volume fraction (61%) of α resulted in the highest yield strength (1624 MPa). And the yield strength decreased by an average of 103 MPa with every increase of 40 °C due to the increase of volume fraction and decrease of the size of secondary α. In β solution treatment plus aging condition, tensile results shows that the strength if the alloy dramatically decreased by an average of 143 MPa for every increase of 40 °C because of larger size of secondary α phase than α/β solution treated plus aged condition.  相似文献   

2.
For the first stage, a metastable β titanium alloy, Ti–3.5Al–5Mo–4V–2Cr–2Sn–2Zr–1Fe reinforced with trace amounts of TiB whiskers and TiC particles was fabricated by vacuum arc melting process and hot forging followed by heat treatment at 780 °C/740 °C, then by aging at 500 °C, 550 °C, 570 °C and 600 °C. For the second stage, the unreinforced titanium alloy was also fabricated by the same process. The microstructural characteristics were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Traces of TiB whiskers and TiC particles (2.2 vol.%) with a volume ratio of 2:3 synthesized in situ exerted a hybrid reinforcing effect on the β titanium alloy. The reinforcements were uniformly distributed in the matrix and the elastic modulus was improved about 25 GPa. Ultimate tensile strength and yield strength achieves about 1625 MPa and 1500MPa respectively, with ductility at 7% when the aging temperature is 500 °C. The ductility of (TiB + TiC)/(Ti–3.5Al–5Mo–4 V–2Cr–2Sn–2Zr–1Fe) matrix composite could be enhanced by increasing the aging temperatures. After 780 °C followed by aging at 570 °C, excellent strength and plasticity properties were obtained (ultimate tensile strength of matrix alloy is 1350 MPa with elongation of 18% and ultimate tensile strength of composite is 1500 MPa with elongation of 13%).  相似文献   

3.
Effects of heat treatments on room temperature mechanical properties and stress-rupture properties of Rene 80 have been investigated. The microstructures were analyzed by optical microscope and scanning electron microscope after each step of heat treatments. With the decrease of aging temperature, the average size of γ′ phase decreases, but the volume fraction of γ′ phase increases. The lower aging temperature suppresses the growing of the coarse γ′ particles, but facilitates the growth of the fine γ′ particles. After the optimum heat treatment, the ultimate tensile strength and yield strength are respectively higher than 1040 MPa and 950 MPa, the stress-rupture life at 871 °C/310 MPa is higher than 170 h with excellent ductility. The improved tensile strength and stress-rupture life are primarily due to the increased volume fraction of γ′ phase. The borides precipitate at grain boundaries at about 913 °C. The primary MC is found to decompose into M6C at about 873 °C and M23C6 at 840–873 °C at grain boundaries. The precipitate of the carbides may partly contribute to the improved mechanical properties.  相似文献   

4.
The effect of solution treatment on the microstructure and mechanical properties of Ti-7333, a newly developed near β titanium alloy, was investigated. Compared to Ti-5553 and Ti-1023, Ti-7333 possesses the slowest α to β dissolution rate, allowing a wider temperature window for processing. The rate of β grain growth decreases with the increase of soaking time and increases with the increase of solution temperature. The β grain growth exponents (n) are 0.30, 0.31, 0.32 and 0.33 for solution treatment temperature of 860 °C, 910 °C, 960 °C and 1010 °C, respectively. The activation energy (Qg) for β grain growth is 395.6 kJ/mol. Water cooling or air cooling after solution treatment have no significant influence on microstructure, which offers large heat treatment cooling window. However, under furnace cooling, the fraction of α phase increases sharply. α phase maintains strictly the Burgers orientation relation with β phase ({0 0 0 1}α//{1 1 0}β and 〈1 1 −2 0〉α//〈1 1 1〉β), except the αp particles formed during forging. The tensile strength decreases with the increase of the solution temperature when only solution treatment is applied, whereas the ductility increases gradually. When aging is applied subsequently, the tensile strength increases with the increase of the solution temperature and the ductility decreases gradually.  相似文献   

5.
The quench sensitivity of 6082 aluminum alloy was investigated by time–temperature–property (TTP) curves. The sensitive temperature of quenching ranges from 250 °C to 440 °C in 6082 Al-alloy, and the nose temperature is about 360 °C. During isothermal treatment process, the Mg2Si particles precipitate from the supersaturated solid solution, and the precipitation rate is the highest at the nose temperature. A number of rod-shaped β′ and β particles precipitate in the early stage of isothermal treatment at 360 °C. Prolonging the holding time leads to more and coarser β particles in the matrix. Both the precipitation of β′ and β particles results in loss of solute and decreasing of the subsequent age hardening effect. Also, the important coefficients k2k5 and critical cooling rate for 6082 Al-alloy are identified, and the properties after different rates of cooling were predicted using quench factor analysis.  相似文献   

6.
Heat treatment with different parameters were performed on the hot-hydrostatically extruded and swaged 3.5 vol.% TiBw/Ti6Al4V composites tubes. The results indicate that the primary α phase volume fraction decreases and transformed β phase correspondingly increases with increasing solution temperatures. The α + β phases will grow into coarse α phases when the aging temperature is higher than 600 °C. The hardness and ultimate tensile strength of the as-swaged TiBw/Ti6Al4V composite tubes increase with increasing quenching temperatures from 900 to 990 °C, while they decrease with increasing aging temperatures from 550 to 650 °C. A superior combination of ultimate tensile strength (1388 MPa) and elongation (6.1%) has been obtained by quenching at 960 °C and aging at 550 °C for 6 h. High temperature tensile tests at 400–600 °C show that the dominant failure modes at high temperatures also differ from those at room temperature.  相似文献   

7.
Composite aluminium alloys reinforced with Al2O3p particles have been produced by squeeze casting followed by hot extrusion and a precipitation hardening treatment. Good mechanical properties can be achieved, and in this paper we describe an optimization of the key processing parameters. The parameters investigated are the extrusion temperature, the extrusion rate and the extrusion ratio. The materials chosen are AA 2024 and AA 6061, each reinforced with 30 vol.% Al2O3 particles of diameter typically in the range from 0.15 to 0.3 μm. The extruded composites have been evaluated based on an investigation of their mechanical properties and microstructure, as well as on the surface quality of the extruded samples. The evaluation shows that material with good strength, though with limited ductility, can be reliably obtained using a production route of squeeze casting, followed by hot extrusion and a precipitation hardening treatment. For the extrusion step optimized processing parameters have been determined as: (i) extrusion temperature = 500 °C–560 °C; (ii) extrusion rate = 5 mm/s; (iii) extrusion ratio = 10:1.  相似文献   

8.
The effect of aging temperature between 650 °C and 750 °C for different aging times on the tensile properties and microstructures of Ti60 alloy were studied. The results show that the strength of the alloy increases first and then decreases with the aging temperature increases from 650 °C to 750 °C. The reduction of area of the alloy is more sensitive to the aging time than elongation. With increasing aging temperature and time, the volume fracture and grain size of silicides and α2 phase increase gradually. The silicides have the strengthen effect on the Ti60 alloy, but the effect weakens when the silicides grow up. The loss of ductility is mainly attributed to the precipitation of α2 phase after aging treatment.  相似文献   

9.
The Mg–7Y–4Gd–1Zn (wt.%) alloy was prepared by hot extrusion technology, and the microstructure, tensile properties and superplastic behavior have been investigated. The extruded alloy possesses high tensile strength both at room temperature and 250 °C, and especially the yield strength can remain above 300 MPa at 250 °C. The outstanding microstructure, i.e. bent 18R long period stacking ordered (LPSO) strips and dynamic recrystallization (DRX) Mg grains containing fine lamellae with 14H LPSO or stacking fault structures, is responsible for the excellent mechanical properties, and it is considered that the integrated performance can be further improved by controlling the size of LPSO phase. The alloy shows the maximum elongation of 700% at 470 °C and 1.7 × 10−4 s−1. The predominant superplastic mechanism is considered to be grain boundary sliding assisted by lattice diffusion. The fracture of superplastic deformation is related to the microstructure evolution, i.e. the disappearance of LPSO phase and the formation of cubic phase. Both high temperature and stress contribute to the phase transformation.  相似文献   

10.
We developed new wrought Mg–2Sn–1Ca wt.% (TX21) and Mg–2Sn–1Ca–2Zn wt.% (TXZ212) alloys with high strength and ductility simultaneously, produced by conventional casting, homogenization and indirect extrusion. A partial dynamically recrystallized microstructure, with the micron-/nano-MgSnCa particles and G.P. zones dispersing, was obtained in TX21 alloy extruded at 260 °C (TX21-260). The TX21-260 alloy exhibited yield strength (YS) of 269 MPa, ultimate tensile strength (UTS) of 305 MPa, while those of the TX21 alloy extruded at 300 °C decreased to be 207 MPa and 230 MPa respectively. For TXZ212-260 alloy, on the other hand, MgSnCa, MgZnCa and MgZn2 phases were observed, and the average grain size increased to be ∼5 μm. The YS and UTS of TXZ212-260 alloy evolved to be 218 MPa and 285 MPa, and the elongation (EL) reached as high as 23%. The high strengths of TX21-260 alloy were expected due to the high number density of nano-MgSnCa phases, G.P. zones and ultra-fine grain size (∼0.8 μm). The high EL of 23% in TXZ212-260 alloy was consistent with the high work-hardening rate, which was attributed to the larger grain size, more high angular grain boundaries, presence of more nano-particles and the weaker texture.  相似文献   

11.
Mechanical behavior of hot rolled Mg–3Sn–1Ca (TX31) magnesium alloy sheets were studied in the temperature range 25–350 °C. The microstructure of the alloy consisted of the eutectic structure of α-Mg + Mg2Sn and a dispersion of needle-like CaMgSn. The highest room-temperature ductility of 18% was obtained by hot rolling of the cast slabs at 440 °C, followed by annealing at 420 °C. The high temperature tensile deformation of the material was characterized by a decrease in work hardening exponent (n) and an increase in strain rate sensitivity index (m). These variations resulted in respective drops of proof stress and tensile strength from 126.5 MPa and 220 MPa at room temperature to 23.5 MPa and 29 MPa at 350 °C. This was in contrast to the ductility of the alloy which increased from 18% at room temperature to 56% at 350 °C. The observed variations in strength and ductility were ascribed to the activity of non-basal slip systems and dynamic recovery at high temperatures. The TX31 alloy showed lower strength than AZ31 magnesium alloy at low temperatures, while it exhibited superior strength at temperatures higher than 200 °C, mainly due to the presence of thermally stable CaMgSn particles.  相似文献   

12.
In the present work, the influence of heating aging treatment (HAT) on the microstructure and mechanical properties of Al–Zn–Mg–Cu alloy was investigated. When the final aging temperature (FAT) was lower than 180 °C, the hardness increased with the decreasing of heating rate, however, in the case of the FAT was higher than 180 °C, the variation of hardness was opposite. The electrical conductivity of Al–Zn–Mg–Cu alloy increased with the decrease of heating rate regardless of FAT. The tensile strength, yield strength and conductivity of the Al alloy after (100–180 °C, 20 °C/h) HAT increased by 1.6%, 4.5% and 14.1% than that after T6 treatment, respectively. The precipitates sequence of HAT was coincident with that of isothermal aging, which is SSS  GP zone  η  η. With the increase of FAT and the decrease of heating rate, the fine precipitates became larger and the continuous η phase at grain boundary grew to be individual large precipitates. The HAT time was decreased about 80% than that for T6 treatment, indicating HAT could improve the mechanical properties, corrosion resistance and production efficiency with less energy consumption.  相似文献   

13.
Steels applied in arctic climates are subjected to low temperature. Since they undergo ductile–brittle transition with falling temperature, their fracture toughness must be addressed, particularly after welding. To predict their behaviour requires knowledge on local properties. Thus, the present study concerns nanomechanical testing of typical microstructures present in the intercritically reheated coarse grained heat affected zone of a 490 MPa forging. Such microstructures were achieved by weld thermal simulation of samples with 11 mm × 11 mm cross section and 100 mm length, using peak temperature of 1350 °C in the first cycle and 780 °C in the second cycle. Both cycles used cooling time Δt8/5 of 5 or 10 s. This caused formation of M–A phases along prior austenite grain boundaries and mixture of bainite/tempered martensite in the bulk. Nanomechanical testing was performed by compression of nanopillars prepared in grain boundary located M–A phases and in the bulk of the grains. The results achieved showed significant that the grain boundary phase possesses much higher strength than the grain bulk. It is also shown that there is large scatter in the stress–strain data, depending on the actual local microstructure being tested.  相似文献   

14.
The Ti–30Zr–5Al–3V (wt.%, TZAV-30) alloy having good mechanical properties is a potential structural material to apply in the aerospace industry. The microstructure and mechanical properties of ZTAV-30 alloy underwent various annealing heat treatments were investigated. The specimens annealed from 500 to 800 °C are composed of α and β two phases. No compound is detected in specimens annealed in that temperature range. The microstructure of annealed specimens is characterized as a typical basketweave microstructure. Three microstructural parameters, thickness of plate α phase, relative fraction of β phase and aspect ratio of α grains, were measured in those annealed specimens. As the alloy annealed in the range from 500 to 800 °C, the average thickness of plate α grains increases with the increasing annealing temperature from 500 to 700 °C but decreases while annealed at 800 °C. The fraction of retained β phase increases with annealing temperature. And the aspect ratio of plate α grains decreases firstly but increases while the annealing temperature is higher than 700 °C. As the variation of those three microstructural parameters, the strength of examined alloy varies from 1269 to 1355 MPa for tensile strength and from 1101 to 1190 MPa for yield strength, inversely, the elongation changes in the range from 12.7% to 8.4%. The strengthening and toughening mechanism of the TZAV-30 alloy with basketweave microstructure is also discussed in this paper.  相似文献   

15.
A high strength Mg-5.1Zn-3.2Y-0.4Zr-0.4Ca(wt%) alloy containing W phase(Mg_3Y_2Zn_3) prepared by permanent mold direct-chill casting is indirectly extruded at 350?C and 400?C, respectively. The extruded alloys show bimodal grain structure consisting of fine dynamic recrystallized(DRXed) grains and unrecrystallized coarse regions containing fine W phase and β2' precipitates. The fragmented W phase particles induced by extrusion stimulate nucleation of DRXed grains, leading to the formation of fine DRXed grains, which are mainly distributed near the W particle bands along the extrusion direction. The alloy extruded at 350?C exhibits yield strength of 373 MPa, ultimate tensile strength of 403 MPa and elongation to failure of 5.1%. While the alloy extruded at 400?C shows lower yield strength of 332 MPa,ultimate tensile strength of 352 MPa and higher elongation to failure of 12%. The mechanical properties of the as-extruded alloys vary with the distribution and size of W phase. A higher fraction of DRXed grains is obtained due to the homogeneous distribution of micron-scale broken W phase particles in the alloy extruded at 400?C, which can lead to higher ductility. In addition, the nano-scale dynamic W phase precipitates distributed in the un DRXed regions are refined at lower extrusion temperature. The smaller size of nano-scale W phase precipitates leads to a higher fraction of un DRXed regions which contributes to higher strength of the alloy extruded at 350?C.  相似文献   

16.
In the present work, Al–Zn–Mg–Cu alloy was aged by non-isothermal cooling aging treatment (CAT). At high initial aging temperature (IAT), the hardness was decreased with the decreased cooling rate. However, when IAT was lower than 180 °C, the hardness was increased with the decreased cooling rate. Conductivity was increased with the decreased cooling rate regardless of IAT. The tensile strength, yield strength and conductivity of Al alloy after (200–100 °C, 80 °C/h) CAT were increased 2.9%, 8.1% and 8.3% than that after T6 treatment, respectively. With an increase of IAT and decrease of cooling rate, the fine GP zone and η′ phase were transformed to be larger η′ and η precipitates. Moreover, continuous η phase at grain boundary was also grown to be individual large precipitates. Cooling aging time was decreased about 90% than that for T6 treatment, indicating cooling aging could improve the mechanical properties, corrosion resistance and production efficiency with less energy consumption.  相似文献   

17.
The principal aim of the present work was to investigate the effects of minor additions of nickel and zirconium on the strength of cast aluminum alloy 354 at ambient and high temperatures. Tensile properties of the as-cast and heat-treated alloys were determined at room temperature and at high temperatures (190 °C, 250 °C, 350 °C). The results show that Zr reacts only with Ti, Si and Al. From the quality index charts constructed for these alloys, the quality index attains minimum and maximum values of 259 MPa and 459 MPa, in the as-cast and solution-treated conditions; also, maximum and minimum values of yield strength are observed at 345 MPa and 80 MPa, respectively, within the series of aging treatments applied. A decrease in tensile properties of ∼10% with the addition of 0.4 wt.% nickel is attributed to a nickel–copper reaction. The reduction in mechanical properties due to addition of different elements is attributed principally to the increase in the percentage of intermetallic phase particles formed during solidification; such particles act as stress concentrators, decreasing the alloy ductility. Tensile test results at ambient temperatures show a slight increase (∼10%) in alloys with Zr and Zr/Ni additions, particularly at aging temperatures above 240 °C. Additions of Zr and Zr + Ni increase the high temperature tensile properties, in particular for the alloy containing 0.2 wt.% Zr + 0.2 wt.% Ni, which exhibits an increase of more than 30% in the tensile properties at 300 °C compared with the base 354 alloy.  相似文献   

18.
Microstructures, thermal stabilities and microstructures and properties evolutions of a new β TiZrAlV alloy have been investigated in this paper. Various hierarchical and multiphase nanolaminated (HMN) structures have been successfully produced in the alloy via appropriate thermomechanical processing treatments. The higher thermal stability (Tp ~ 275 °C), i.e., onset temperature of phase transformation, is achieved in a specific HMN structure consisting of nanoscale acicular isothermal α″ martensites, submicroscale α plates and large microscale primary αp grains, compared with that (Tp ~ 105 °C) of its coarse-laminated counterpart without primary αp grains. For this specific HMN structure, thermal exposures at 300–400 °C lead to further precipitation of isothermal α″ martensites, which enhances evidently the strength and reduces the ductility, while the reverse transformation of α″/α to β and the coarsening of previously formed α plates concur during thermal exposures at 500–600 °C, which leads to dramatically decreased strength and increased ductility.  相似文献   

19.
In recent years, the transformation-induced plasticity (TRIP) and twinning-induced plasticity (TWIP) steels have been the focus of great attention thanks to their excellent tensile strength-ductility combination. Accordingly the mechanical behavior of an advanced microalloyed TRIP–TWIP steel, the compression tests were conducted from 25 to 1000 °C. This experimental steel shows a high compressive strength of 1280 MPa with the yield strength of 385 MPa as well as an outstanding strain hardening rate of about 14,000 MPa at the 25 °C. In addition the results indicate that the plastic deformation in the range of 25–150 °C is controlled by both the strain-induced martensite formation and mechanical twinning. However the mechanical twinning has been speculated as the only deformation mechanism in the temperature range of 150–1000 °C. This as well has led to an outstanding grain refinement via grain partitioning. The occurrence of mechanical twinning at such high temperatures is a novel observation in this grade of TRIP–TWIP high manganese steels.  相似文献   

20.
In the present study, diffusion bonding of titanium alloy and micro-duplex stainless steel with a nickel alloy interlayer was carried out in the temperature range of 800–950 °C for 45 min under the compressive stress of 4 MPa in a vacuum. The bond interfaces were characterised by scanning electron microscopy, electron probe microanalyzer and X-ray diffraction analysis. The layer wise Ni3Ti, NiTi and NiTi2 intermetallics were observed at the nickel alloy/titanium alloy interface and irregular shaped particles of Fe22Mo20Ni45Ti13 was observed in the Ni3Ti intermetallic layer. At 950 °C processing temperature, black island of β-Ti phase has been observed in the NiTi2 intermetallics. However, the stainless steel/nickel alloy interface indicates the free of intermetallics phase. Fracture surface observed that, failure takes place through the NiTi2 phase at the NiA–TiA interface when bonding was processed up to 900 °C, however, failure takes place through NiTi2 and β-Ti phase mixture for the diffusion joints processed at 950 °C. Joint strength was evaluated and maximum tensile strength of ∼560 MPa and shear strength of ∼415 MPa along with ∼8.3% ductility were obtained for the diffusion couple processed at 900 °C for 45 min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号