首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
为探索铜阳极泥流程短、操作简便、损耗低、回收率高的碲回收工艺,本文对其处理过程中的四种含碲物料进行了直接或间接的碱浸试验,并对最终较优碱浸工艺的产物进行了除杂试验,得到如下结论:对蒸硒渣进行直接或间接碱浸试验,碲的浸出率为1.26%,蒸硒渣中正四价碲含量很低;对沉金后液中和渣进行碱浸试验,碲的浸出率为1.2%,沉金后液中的碲主要是正六价碲;对铂钯精矿直接或间接碱浸试验,碲的浸出率不超20%,铂钯精矿中有少部分的正四价碲,主要是单质碲、正六价碲;对一次还原后液中和渣进行直接碱浸试验,碲的浸出率达到98.69%,中和渣中碲的形态主要是正四价碲;采用Na_2S对碱浸液中的重金属除杂,效果较好。  相似文献   

2.
通过工业化试验得出,分铜后液中金、铂、钯的还原率均可以达到80% 以上,还原后液中贵金属控制在0.2 mg/L以下,还原渣中金、铂、钯总量均值在0.25%,每年可增效约361.2万元;沉金后液中金、铂、钯的吸附率均可以达到95% 以上,与锌粉置换工艺对比,树脂吸附工艺在沉碲之前就将金、铂、钯等贵金属有效富集,避免了贵金...  相似文献   

3.
处理阳极泥的方法主要取决于阳极泥的数量.有价元素在阳极泥中的含量及各个工厂工艺技术发展的历史。智利国营矿业公司文塔纳斯熔炼-精练厂的贵金属车间.除金、银外还回收硒、碲、铂、钯等其他元素。本文介绍这些元素分离方法的发展现状及有助于这些过程的操作.  相似文献   

4.
铂把精矿预处理脱硒碲试验研究   总被引:1,自引:0,他引:1  
邓成虎 《黄金》2011,32(5):39-41
对由铜阳极泥产出的铂钯精矿,采用氧化焙烧--碱浸--酸浸预处理工艺除去硒碲,富集金铂钯,确定了最佳工艺条件.硒、碲脱除率分别达到98.53 %、95.27 %,浸出渣中碲质量分数为5.18 %、硒质童分数为0.29 %,为后续工序分离提纯贵金属创造了有利条件.  相似文献   

5.
大冶有色金属有限责任公司冶炼厂的铜阳极泥经处理后生成的沉金后液中含有少部分的Au与大部分Pt与Pd,为提高贵金属的回收率,公司选择在沉金后液中直接回收贵金属,进行了大量试验.试验采用二级交换柱设备探索了 F树脂对沉金后液中Au、Pt、Pd贵金属离子的吸附情况,试验结果表明:F树脂对Pt离子的吸附效果一般,对Au离子与P...  相似文献   

6.
现行的银阳极泥处理工艺铂钯直收率低,且稀贵金属物料在流程中不断富集循环,未能实现金属高效回收。研究表明:采用硝酸浸出-浸出液氯化沉银-沉银液还原铂钯-硝酸浸出渣王水分金-还原得产品金工艺处理银阳极泥,银、铂、钯硝酸浸出率分别为99.6%、82.4%和89.1%,氯化沉银率为99.9%,铂钯还原沉淀率分别为99.6%和99.8%。  相似文献   

7.
余建民  毕向光  李权 《黄金》2014,(1):48-51
系统总结了亚硫酸钠在稀贵金属冶金中的应用。主要阐述了从铜镍合金氯化渣中脱硫富集贵金属,从铜阳极泥分金渣中分银,从高硒、碲的铜阳极泥中分离回收金、钯、铂,硒、碲的分离提纯,在盐酸介质中还原精炼金,从负载有机相中反萃金,从弱酸性介质中还原银,制备金的电镀配合物等,以期为从事相关领域的科技人员提供参考。  相似文献   

8.
大冶有色金属有限责任公司采用回转窑硫酸化焙烧法处理阳极泥,再从沉金后液回收铂、钯、碲等贵金属。针对脱铜后液的还原沉淀,采用不同还原剂进行对比,确定硫酸亚铁还原剂的效果最好。通过小型试验与中试结果得出最优工业应用试验参数为温度80℃,1. 5倍理论用量的硫酸亚铁还原剂,反应时间2 h,脱铜后液中金、铂、钯的还原率分别为86. 65%、97. 00%、82. 70%。根据工业应用试验结果,按每年3 000 t阳极泥处理量进行经济效益计算,得出每年脱铜后液中回收贵金属可以创造效益约423万元。  相似文献   

9.
正我国铜冶炼产能巨大,从铜阳极泥中综合回收金、银、铂、钯等有价组分不仅有利于贵金属资源综合利用,而且对企业利润具有很大贡献。目前,国内阳极泥处理工艺主要以火法流程、选冶联合流程、全湿法或以湿法为主的流程三种。近几年由瑞典引进的卡尔多炉处理工艺开始在中国铜阳极泥处理中大显身手,该工艺处理流程为阳极泥-卡尔多炉熔炼-银电解-氯化分金-氯化沉铂-盐酸沉钯。卡尔多炉处理铜阳极泥火法工艺具有对原  相似文献   

10.
采用树脂吸附法,利用QPTU树脂,控制温度30~40℃,回收沉金后液中的Au、Pt、Pd贵金属,可以控制尾液含金、铂、钯在0. 2 mg/L以下。结果显示,该树脂对沉金后液中的Au、Pt、Pd都有很好的吸附效果;在此运行温度条件下并没有发生降解;该树脂的吸附突破顺序依次是Pt、Pd和Au。  相似文献   

11.
在HCl-H2O2湿法分解体系中,加入KClO3分解样品,不仅克服了NO3-对铂、钯吸附率的影响,而且极大提高了样品分解能力。样品经HCl-H2O2-KClO3高效湿法分解体系分解后,溶液在10%(V/V)HCl介质中,通过活性炭-717阴离子交换树脂混合吸附剂进行分离富集,有效消除了干扰元素的影响。以Pt 265.945{127} nm、Pd 340.458{99} nm、Au 242.795{139} nm作为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定地质样品中铂、钯、金的方法。方法中铂、钯、金的检出限分别为0.015、0.012、0.005 1 μg/g,测定下限分别为0.050、0.040和0.017 μg/g。按照实验方法测定地质标准样品中铂、钯、金,测定结果的相对标准偏差(RSD,n=10)均不大于6.7%,测定结果与认定值相符。  相似文献   

12.
研究了铂在丙醇-硫氰化钾-氯化钠-水体系中的析相萃取行为及与一些金属离子分离的条件。结果表明,丙醇的水溶液在氯化钠的作用下可分成醇/水两相,在分相过程中,Pt(Ⅳ)与硫氰化钾生成的[Pt(SCN)6]2-可与质子化的丙醇 [PrOH2]+形成离子缔合物[Pt(SCN)6]2-·2[PrOH2]+而被丙醇相完全萃取。当溶液中丙醇、硫氰化钾和氯化钠分别为30%(V/V)、6.0×102- mol/L和0.16 g/mL时,Pt(Ⅳ)的萃取率达到98.2%以上,而试液中的Mo(Ⅵ)、Ce(Ⅲ)、Ni(Ⅱ)、V(Ⅴ)、Cr(Ⅲ)、Ag(Ⅰ)、Mn(Ⅱ)、Mg(Ⅱ)、Cd(Ⅱ)、Ga(Ⅲ)、Fe(Ⅱ)和Al(Ⅲ)几乎不被萃取,从而实现了Pt(Ⅳ)与这些金属离子的分离。方法应用于Ni-Pt/Al2O3催化剂中铂的分离萃取和测定,测得结果与参考值基本一致,相对标准偏差(RSD,n=5)为2.3%。  相似文献   

13.
为解决传统铅试金法中所存在的污染问题,通过理论计算、优化操作流程等方式建立了针对贫铂矿石中痕量金、铂、钯的铋试金-电感耦合等离子体质谱测定方法。结果表明,选用40.0 g氧化铋、30.0 g硼酸、20.0 g无水碳酸钠和2.0 g面粉作为试金配料的组分,贵金属的选择性好,排除重金属的能力强,可基本满足贫铂矿石样品(20.0 g)中痕量金、铂、钯的测定需要。实验还针对铋扣难以完全回收的问题,采用了在出炉时趁热倾倒熔渣,使铋扣于空气中自然冷却然后取出的方法。在进行质谱测定时,选择197Au、195Pt、105Pd分别作为金、铂、钯的测定同位素,以185Re、115In作为校正基体效应与信号漂移的内标元素。方法检出限(ng/g,以20.0 g取样量计)分别为:0.51(Au)、0.43(Pt)、0.50(Pd),Pt、Pd、Au测定结果的相对标准偏差(RSD, n=5)分别为4.7%、5.4%、9.7%。对GBW07291和GBW07293铂族元素地球化学标准物质中Pt、Pd、Au进行测定,测定值与认定值基本一致。方法可用于地质样品中痕量Au、Pt、Pd的准确测定。  相似文献   

14.
邵坤  范建雄  李刚  赵改红 《冶金分析》2021,41(10):49-56
采用铅试金法富集高镍锍中金、铂和钯时,因高镍锍中镍、铜含量较高,严重影响着铅试金的熔炼富集和灰吹效果。实验采用盐酸溶解分离高镍锍中镍、铜等基体组分,得到的含贵金属残渣经包铅灰吹法进一步富集与分离,最终实现了铅试金-电感耦合等离子体原子发射光谱法(ICP-AES)对高镍锍中金、铂和钯的准确测定。实验探讨了盐酸用量、铅箔用量、灰皿类型、灰吹损失、银加入量、分析谱线等因素对测定结果的影响。结果表明,对于5 g高镍锍样品,80 mL盐酸几乎可以将镍、铜等基体组分溶解完全;残渣经0.45 μm滤膜收集后,加入5 mg银并包于6.0 g铅箔中,在950 ℃的镁砂灰皿中灰吹,铅及少量贱金属硫化物被氧化分离而金、铂和钯几乎不损失,形成的银合粒经混合酸分解后,银以氯化银沉淀的形式分离不干扰测定;在王水(1+9)介质中,于分析线Au 267.595 nm、Pt 265.945 nm、Pd 340.458 nm处,采用ICP-AES测定金、铂和钯。各元素校准曲线的相关系数均在0.999以上;方法检出限为0.067 μg/g(Au)、0.085 μg/g(Pt)、0.107 μg/g(Pd)。方法用于测定高镍锍中金、铂和钯,结果的相对标准偏差(RSD,n=7)为2.8%~5.9%。测定结果与行业标准方法(YS/T 252.8—2020)对照测定结果基本吻合。  相似文献   

15.
采用过氧化钠高温熔解样品,3.0~4.5 mol/L盐酸介质中二氯化锡还原、碲共沉淀富集铂、钯,选择Pt 265.945 nm、Pd 340.458 nm作为分析谱线,建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定石油化工废催化剂不溶渣中铂、钯的方法。样品中铂的质量浓度在2~27 μg/mL、钯的质量浓度在0.7~20 μg/mL范围内,校准曲线线性方程分别为I Pt =3 624 × ρPt-180.4和I Pd = 9 869 ×ρPd-220.9,线性相关系数R2均为0.999 98。方法中铂、钯的检出限分别为0.017 μg/mL和0.004 2 μg/mL。测定石油化工废催化剂不溶渣样品中109~1 342 g/t铂和37~977 g/t钯,结果的相对标准偏差(RSD,n=5~11)分别为1.1%~1.9%和1.1%~3.6%,测定结果与火试金富集-电感耦合等离子体原子发射光谱法的测定结果一致,铂、钯的回收率分别为99%~100%和100%。  相似文献   

16.
合成了新试剂 5-(5-氰基-2-吡啶偶氮)-2,4-二氨基甲苯 ( 5-CN-PADAT ),探讨了该试剂与Pd 的显色反应。实验表明:在1.2 mol/L HClO4中,于室温下Pd 可与5-CN-PADAT反应,生成组成比为1∶1的紫红色稳定配合物。配合物的最大吸收波长位于 586 nm 处,Pd的质量浓度在 0~1.2 μg/mL 范围内符合比尔定律,线性回归方程为 A=1.110 ρ (μg/mL) + 0.008 6,相关系数r=0.999 9,表观摩尔吸光系数为 1.20 × 105 L · mol-1 · cm-1。反应在强酸介质中进行,大量常见金属离子及 1 250 倍的金,500 倍的锇,250 倍的银和铑,125 倍的铱和铂,75 倍的钌不干扰Pd的测定。方法应用于钯分子筛和钯-炭催化剂中Pd 的测定,结果与参考值相符,相对标准偏差(RSD,n=6)分别为 2.3% 和3.7%。  相似文献   

17.
利用He-Ne激光器,观测了2-(5-硝基-4-甲基-2-吡啶偶氮)-5-二甲氨基苯胺(5-NO3-4-Me-PADMA)与Pd(II)形成络合物的激光热透镜效应。结果表明,在1.8mol/L H2SO4介质中,并在50%丙酮(体积分数,其作用是增强热透镜信号强度)存在的情况下,5-NO3-Me-PADMA与Pd(II)反应形成蓝绿色络合物,其最大吸收峰位于623nm处,与所用He-Ne激光器输出波长632.8nm接近,据此建立了激光热透镜光谱法(TLS)测定痕量钯的新方法。实验表明,热透镜信号强度与Pd(II)质量浓度在5~250ng/mL范围内符合线性关系,相关系数为0.9989,方法检出限为1.5ng/mL。该法不仅灵敏度高,而且选择性佳,800倍量的Fe3+、Co2+和Cu2+,500倍量的Ni2+等常见金属离子以及25倍的Pt(IV),10倍量的Au(III)、Rh(III)、Ru(III)和Os(VIII),5倍量的Ir(III)等贵金属离子不干扰钯的测定。将实验方法应用于矿石中痕量钯的测定,测得结果与火焰原子吸收光谱法(FAAS)基本一致,相对标准偏差(RSD,n=6)为0.57%~1.3%。  相似文献   

18.
在碱性介质中,8-氨基喹啉-5-偶氮-对苯甲酸(AQBA)与Au(Ⅲ)显色络合形成3∶1的蓝色螯合物,该螯合物最大吸收波长为610 nm,在十六烷基三甲基溴化胺(CTMAB)存在的条件下,导数吸光度值明显增加,一次进样产生一峰一谷响应曲线,依据(A1、A2)两个拐点均可用于定量分析。若采用ΔA=A2-A1进行分析,灵敏度得到大幅度提高,为普通法的1.8倍。试验表明,Au(Ⅲ)的含量在0.04~2.6 μg/mL范围内遵守比尔定律; Fe3+、Cu2+、Ni2+、Hg2+、Mn2+等离子形成水解产物对Au有吸附作用而产生干扰,可加入适量EDTA和NaF掩蔽剂加以消除。建立的分析技术应用于电解阳极泥中金的测定,结果同原子吸收光谱法的测定结果相一致。  相似文献   

19.
壳聚糖经羧甲基化改性以及碳二亚胺活化后接枝在Fe3O4颗粒表面,制备Fe3O4/羧甲基化壳聚糖(MCMCS)磁性纳米粒子,用于吸附贵金属铂和钯.结果表明:MCMCS粒径约20 nm,Fe3O4质量分数为36%,比饱和磁化强度25.74×10-3A·m2·g-1.当pH=2时MCMCS对Pd和Pt的吸附以质子化氨基(+)与Pd(Pt)-Cl络合离子(-)的静电吸引为主要机理.MCMCS对Pd和Pt的饱和吸附容量分别为3.2和2.7 mmol·g-1;Pd和Pt之间存在竞争吸附,二者竞争相同的活性位,MCMCS对Pd的亲和性优于Pt.用0.5 mol·L-1硫脲脱附,脱附率最高(>68%),但用5 mol·L-1氨水对Pd的脱附选择性最好.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号