首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper focuses on the mechanical characterization of a bioceramic based on commercial alumina (Al2O3) mixed with synthesized tricalcium phosphate (β-TCP) and commercial titania powder (TiO2). The effect of β-TCP and TiO2 addition on the mechanical performance was investigated. After a sintering process at 1600 °C for 1 h, various mechanical properties of the samples have been studied, such as compressive strength, flexural strength, tensile strength, elastic modulus, and fracture toughness. The measurements of the elastic modulus (E) and the tensile strength (σ t ) were conducted using the modified Brazilian test while the compressive strength (σ c ) was determined through a compression test. Also, semi-circular bending (SCB) specimens were used to evaluate the flexural strength (σ f ) and the opening mode fracture toughness (K IC). From the main results, it was found that the best mechanical performance is obtained with the addition of 10 wt.% TCP and 5 wt.% TiO2. Alumina/10 wt.% tricalcium phosphate/5 wt.% titania composites displayed the highest values of mechanical properties and a good combination of compressive strength (σ c ?≈?352 MPa), flexural strength (σ f ?≈?98 MPa), tensile strength (σ t ?≈?86.65 MPa), and fracture toughness (K IC?≈?13 MPa m1/2).  相似文献   

2.
Admittance of MOS structures based on Hg1?x Cd x Te layers grown by molecular beam epitaxy on semi-insulating GaAs substrates is studied. Effect of anomalous generation on the Hg1?x Cd x Te surface in a strong electric field (≈105 V/cm) is found. It is shown that the density of surface states of the MCT — SiO2 interface depends weakly on the presence of the graded energy-gap layer and the type of semiconductor admittance.  相似文献   

3.
The values of internal stresses σ i that determine the maximum of the dependence of differential permeability μ d (H) have been obtained as well as the limiting value of the angle between highand low-angle grain boundaries. When analyzing 90-degree transitions, singular points have been discovered that separate domains with different values of critical magnetization-reversal fields. This has made it possible to calculate the values of all magnetizations, including easy-plane (EP), residual, and “reverse” ones (in the area of positive magnetic-field values). The results open up possibilities for conscious choice of the field ranges for excitation of irreversible 90-degree transitions with known values of σ i. The latter can serve as the basis for developing new techniques of nondestructive testing.  相似文献   

4.
The oxide layer in nanotransistors with metal-oxide-semiconductor (MOS) structures may be as thin as 20Å. The physical diagnostics of such structures via conventional methods of voltage-capacitance characteristics (VFCs) is impossible without taking into account the usually disregarded effects of degeneracy and dimensional quantization of the electron gas. However, as the oxide-layer thickness decreases, these effects make an increasingly substantial contribution to capacitance C of the MOS structure not only at C?C i (where C i is the “oxide capacitance”) but also at C < C i . In this study, we have developed a general method for determining the principal characteristics of MOS structures from the data of analysis of the VFCs in the region of the Schottky depletion layer. The doping level, the surface potential, the semiconductor surface charge, the voltage of “flat bands,” oxide capacitance C i , the voltage drop across the oxide, and the sign and density of the charge fixed in it can be found at an accuracy of ?0.1% within the framework of a single experiment regardless of the oxide-layer thickness and without using fitting parameters and a priori assumptions concerning the properties of the electron gas in the accumulation and inversion layers. The stages and results of the implementation of this method are demonstrated by the results of experiments performed on an n-Si-based MOS structure with a 171.2 Å-thick oxide layer.  相似文献   

5.
The properties of TBC-3 and PZT-23 piezoelectric ceramics have been studied by the method of loaded three-element complex oscillator. Changes in the higher-order (up to fifth) parameters are considered for large mechanical (0–120 MPa) and electric (0–600 kV/m) loads. Results of studying the longitudinal flexibility s 11 E , piezoelectric modulus d 31, and dielectric permittivity ε 33 σ are presented within a frequency range of 20–200 kHz, where the frequency dispersion of dielectric as well as piezoelectric and elastic parameters is observed.  相似文献   

6.
In this paper, a multi-variable regression model, a back propagation neural network (BPNN) and a radial basis neural network (RBNN) have been utilized to correlate the cutting parameters and the performance while electro-discharge machining (EDM) of SiC/Al composites. The four cutting parameters are peak current (Ip), pulse-on time (Ton), pulse-off time (Toff), and servo voltage (Sv); the performance measures are material remove rate (MRR) and surface roughness (Ra). By testing a large number of BPNN architectures, 4-5-1 and 4-7-1 have been found to be the optimal one for MRR and Ra, respectively; and it can predict them with 10.61 % overall mean prediction error. As for RBNN architectures, it can predict them with 12.77 % overall mean prediction error. The multivariable regression model yields an overall mean prediction error of 13.93 %. All of these three models have been used to study the effect of input parameters on the material remove rate and surface roughness, and finally to optimize them with genetic algorithm (GA) and desirability function. Then, an intelligent optimization system with graphical user interface (GUI) has been built based on these multi-optimization techniques, in which users can obtain the optimized cutting parameters under the desired surface roughness (Ra).  相似文献   

7.
Aqueous gels such as biopolymer gels, mucus, and high water content hydrogels are often qualitatively described as lubricious. In hydrogels, mesh size, ξ, has been found to be a controlling parameter in friction coefficient. In the tribology of aqueous gels, we suggest that the Weissenberg number (Wi) is a useful parameter to define different regimes, and following the original formulations in rheology, Wi is given by the polymer relaxation time (ηξ3/kBT) multiplied by the shear rate due to fluid shear through a single mesh (V/ξ): Wi?=?ηVξ2/kBT. At sliding speeds below a Weissenberg number of approximately 0.1, Wi?<?0.1, the friction coefficient is velocity-independent and scales with mesh size to the ??1 power, µ ∝ ξ?1. De Gennes’ scaling concepts for elastic modulus, E, give a dependence on polymer mesh size to the ??3 power, E ∝ ξ?3, and following Hertzian contact analysis, the contact area is found to depend on the mesh size squared, A ∝ ξ2. Combining these concepts, the shear stress, τ, and therefore the lubricity of aqueous gels, is predicted to be highly dependent on the mesh size, τ ∝ ξ?3. Studies aimed at elucidating the fundamental mechanism of lubricity in biopolymer gels, mucus, and hydrogels have wrestled with comparisons across mesh size, which can be extremely difficult to accurately quantify. Using scaling concepts relating polymer mesh size to water content reveals that shear stress decreases rapidly with increasing water content, and plots of shear stress as a function of swollen water content are suggested as a useful method to compare aqueous gels of unknown mesh size. As a lower bound, these data are compared against estimates of fluid shear stress for free and bound water flowing through a mesh size estimated by the water content of the gels. The results indicate that the strong dependence on lubricity is likely due to a synergistic combination of a low viscosity solvent (water) coupled to a system that has a decreasing friction coefficient, modulus, and the resulting contact pressure with increasing water content. Although the permeability, K, of aqueous gels increases dramatically with water content (and mesh size), K ? ξ2/η, the stronger decrease of the elastic modulus and subsequent decrease in contact pressure due to an increase in the contact length, predicts that the draining time under contact, t, actually increases strongly with increasing water content and mesh size, t ∝ ξ2. Consistent with the finding of extremely high water content aqueous gels on the surfaces of biological tissues, these high water content gels are predicted to be optimal for lubrication as they are both highly lubricious and robust at resisting draining and sustaining hydration.  相似文献   

8.
The identification of targets varies in different surge tests. A multi-color space threshold segmentation and self-learning k-nearest neighbor algorithm (k-NN) for equipment under test status identification was proposed after using feature matching to identify equipment status had to train new patterns every time before testing. First, color space (L*a*b*, hue saturation lightness (HSL), hue saturation value (HSV)) to segment was selected according to the high luminance points ratio and white luminance points ratio of the image. Second, the unknown class sample S r was classified by the k-NN algorithm with training set T z according to the feature vector, which was formed from number of pixels, eccentricity ratio, compactness ratio, and Euler’s numbers. Last, while the classification confidence coefficient equaled k, made S r as one sample of pre-training set T z ′. The training set T z increased to T z+1 by T z ′ if T z ′ was saturated. In nine series of illuminant, indicator light, screen, and disturbances samples (a total of 21600 frames), the algorithm had a 98.65%identification accuracy, also selected five groups of samples to enlarge the training set from T 0 to T 5 by itself.  相似文献   

9.
Nonparametric (kernel) estimation of a probability density function f(x) for a sample of finite size is considered using the C-approach. The smoothness parameter β of the estimated probability density is introduced. For the case β > 2, it is shown that the convergence of the density estimate f n (x) to the function f(x) can be improved by using alternating-sign weight functions (higher-order weight functions). Estimation of the derivatives of a function is briefly considered using the same approach.  相似文献   

10.
The ball-on-disk friction and wear tests of CN X coatings (CN X /CN X ) were conducted under a nitrogen atmosphere with controlled relative humidity (RH) (3.4–40.0%RH) and oxygen concentration (100–21 × 104 ppm) in this study. We found that the specific wear rate of CN X coating on ball (W b), which could give stable and low friction coefficient (<0.05), was below 3.0 × 10?8 mm3/Nm. Average friction coefficients (µ a) and W b of CN X /CN X increased (µ a: 0.02–0.33, W b: 1.6 × 10?8–2.4 × 10?7 mm3/Nm) with increasing oxygen concentration (230–211,000 ppm) as well as RH (4.7–21.1%RH) under a nitrogen atmosphere. However, the W b remained low value below 2.3 × 10?8 mm3/Nm regardless of oxygen concentration (100–207,000 ppm) of a nitrogen atmosphere (3.4–3.9%RH) when CN X -coated balls were slid against a hydrogenated CN X (CN X :H) coatings (CN X /CN X :H). Besides, the CN X /CN X :H achieved low and stable friction coefficient below 0.05 under a nitrogen atmosphere (10,000 ppmO2) regardless of increasing RH up to 20%RH. Raman analysis indicated that the structure of carbon on the top surface of CN X coating was changed from as-deposited CN X coating in the case of low friction coefficient (<0.05). Furthermore, TOF-SIMS analysis provided the evidence that the carbon derived from CN X -coated disk was considered to diffuse into the ball surface, and it mixed with the carbon derived from CN X -coated ball on the wear scar, which formed the chemically bonded carbon tribo-layer. Low friction coefficient (<0.05) with CN X coatings under a nitrogen atmosphere was achieved due to self-formation of the carbon tribo-layer.  相似文献   

11.
Two methods for measuring solidification point T S of the GKGh-136 silicone liquid are described. T S ≌ 125 K is determined by the first method from specific features of the temperature dependence of the resistance of an organic quasi-2D conductor in a GKGh-136 droplet with a size of ~1 mm. T S ≌ 130 K is assessed by the second method from the occurrence of a specific feature in the temperature dependence of the resistance of the GKGh-136 and fine-dispersed graphite mixture, which is caused by desorption of helium in the sample volume during warming-up >T S .  相似文献   

12.
Two types of blade-tip rubbing due to the static misalignment of the bladed-disk center and casing center and casing deformation are simulated. By applying aerodynamic load in the blade lateral/flexural direction, vibration responses due to blade-casing rubbing are analyzed under the run-up process with constant angular acceleration and the steady-state process at 10000 rev/min. The effects of some parameters, such as the static misalignment e c, casing stiffness k c and casing deformation n p, on the system vibration responses are also illustrated by spectrum cascades, time-domain waveforms of displacement, normal rubbing forces, amplitude spectra and the impulse P in a single blade-casing rubbing period. The results show that blade-tip rubbing will cause amplitude amplification and harmonic resonance phenomena when the multiple frequencies (nf r) of rotational frequency (f r) coincide with the first three flexural dynamic frequencies of the blade (f n1, f n2 and f n3). For example, the displacement amplitudes at 3f r, 14f r and 38f r are large and the vibration is dominant near f n1. In addition, the casing deformation mainly excites the dominant Blade passing frequency (BPF), which is related to the casing deformation coefficient n p. By comparing these impulse values, for the selected parameters in this paper, the casing stiffness has a greater effect on impulse than the static misalignment and casing deformation coefficient. The impulse shows a linear increase trend with the increasing static misalignment, and it decreases under the large n p because the contact time decreases with the increase of n p.  相似文献   

13.
A method of rapid X-ray analysis is proposed. The content of the method is that the ratio I d/I i A is measured in two channels of a γ spectrometer, one of which is configured for the diffraction maximum of the determined phase (I d) and the other measures the intensity of the spectral line of secondary element A (I i A ), the atomic number of which is the same as that of the material of the X-ray tube anode. Results of the X-ray analysis of chromite and molybdenum are presented. The test rate was 7 min per test. The maximum deviation from the content of MoS2 was 0.4% in standard specimens with concentrations of 24–29% and that of Fe and Cr2O3 was 0.3% for concentrations of 14–19%.  相似文献   

14.
Experiments and simulations are performed to study the formation of silicon nanocrystals (Si-NCs) in multilayer structures with alternating ultrathin layers of SiO2 and amorphous hydrogenized silicon (α-Si:H) during high-temperature annealing. The effect of annealing on the transformation of the structure of the α-Si:H layers is studied by methods of high-resolution transmission electron microscopy, Raman spectroscopy, and photoluminescence spectroscopy. The conditions and kinetics of Si-NC formation are analyzed by the Monte Carlo technique. The type of the resultant crystalline silicon clusters is found to depend on the thickness and porosity of the original amorphous silicon layer located between SiO2 layers. It is shown that an increase in the thickness of the α-Si layer in the case of low porosity leads to the formation of a percolation silicon cluster instead of individual Si nanocrystals.  相似文献   

15.
Machining of hybrid metal matrix composite is difficult as the particulates are abrasive in nature and they behave like a cutting edge during machining resulting in quick tool wear and induces vibration. An attempt was made in this experimental study to evaluate the machining characteristics of hybrid metal matrix composite, and a mathematical model was developed to predict the responses, namely surface finish, intensity of vibration and work-tool interface temperature for known cutting condition while machining was performed in computer numerical control lathe. Design of experiments approach was used to conduct the trials; response surface methodology was employed to formulate a mathematical model. The experimental study inferred that the vibration in V x, V y, and V z were 41.59, 45.17, and 26.45 m/s2, respectively, and surface finish R a, R q, and R z were 1.76, 3.01, and 11.94 μm, respectively, with work-tool interface temperature ‘T’ of 51.74 °C for optimal machining parameters, say, cutting speed at 175 m/min, depth of cut at 0.25 mm and feed rate at 0.1 mm/rev during machining. Experimental results were in close conformity with response surface method overlay plot for responses.  相似文献   

16.
Self-resonating pulsed waterjet (SRPW) is superior to plain waterjet in many ways and is being employed in numerous applications. To further improve the performance of SRPW, the optimal value of the preferred Strouhal number (Sd), which is used to determine the chamber length of a self-resonating nozzle, was experimentally studied at inlet pressures of 10 MPa and 20 MPa. The axial pressure oscillation peak and amplitude were used to evaluate the performance of SRPW, in order to find the optimum Sd value. Results show that Sd value determines the self-resonance behavior of an organ-pipe nozzle and greatly affects the intensity of the axial pressure oscillation. Under the experimental conditions, the optimum Sd values are 0.315 and 0.278 respectively, corresponding to inlet pressures of 10 MPa and 20 MPa. Compared with the default value of 0.3 obtained from air jet experiment, the optimum Sd value at inlet pressure of 10 MPa is a little larger and oppositely a bit smaller at inlet pressure of 20 MPa. Thus, if the inlet pressure is not considered, Sd value of 0.3 is reasonable for determining the chamber length of a self-resonating nozzle for generating effective SRPW.  相似文献   

17.
This paper investigated the impacts of surface heating on pollutant transport and Air Exchange Rate (AER) in street canyons of different aspect ratios (building heightH to street widthW) using computational fluid dynamic (CFD) technique. Street canyons ofH/W varied from 0.1 to 2 were employed in the study. These street-canyon aspect ratios covered a range of basic flow regimes including skimming flow (H/W=1 and 2), wake interference flow (H/W=0.5), and isolated roughness flow (H/W=0.1). Different façade/surface heating imposed different influence on the flow field and pollutant transport in street canyons of differentH/W. The AER induced by vertical velocity fluctuationAER w, and mean vertical velocityAER w . AER of street canyon with differentH/W and different surface heating exhibited their unique characteristics.  相似文献   

18.
The diffuser of a reactor coolant pump was optimized using an orthogonal approach with numerical simulation to improve the pump hydraulic performance. Steady simulation was conducted by solving Reynolds-averaged Naiver-Stokes equations with the SST k-ω turbulence model using CFX code. The influence of the diffuser geometric parameters, namely, S, φ, α 4, b 4, δ 2, R t and R 4, on the pump performance were determined. L18 (37) orthogonal table was chosen for the optimization process. Best indicators were determined, and range analysis of energy losses, head, and efficiency at the rated condition was performed. Optimal parameters of the diffuser were S = 490 mm, φ = 36°, α 4 = 30°, b 4 = 200 mm, δ 2 = 20 mm, R t = 5 mm and R 4 = 565 mm. The final design was experimentally tested. Simulation results showed more remarkable performance than the experimental result. However, the numerical predictions and experimental results were consistent, validating the design procedure. Loading of the impeller and diffuser blades was analyzed to investigate the direct impact on the hydrodynamic flow field. The head was 14.74 m, efficiency was 79.6 %, and efficiency of the prototype pump was 83.3 % when the model pump functioned at the rated conditions. Optimization results showed that efficiency and head were improved at the design condition.  相似文献   

19.
The objective of this paper is to provide quantitative information of uniform impact forces on the sprayed surface in order to optimize the multi-nozzle spray etching system. Spray characteristics obtained from optical non-intrusive measurements using particle image velocimetry (PIV) and particle motion analysis system (PMAS) are measured in single- and twin-nozzle sprays, and then the multi-nozzle spray characteristics is simulated based on those of measurement data. The influences of the multi-nozzle arrangement, nozzle pitch, and pipe pitch on the spray characteristics such as droplets’ velocity, diameter, number density, impact force and their uniformity are properly evaluated. The experimental cases E1 and E2 represent single-spray nozzle A and B, respectively. For twin-spray tests, three nozzle combinations, namely E3 (nozzle A-A), E4 (nozzle A-B) and E5 (nozzle B-B) are considered with different nozzle pitches. The multi-spray simulation cases S1 and S6 represent the multi-spray cases with a homo-nozzle arrays which is consisted in all nozzles of nozzle A or B. For cases from case S2 to S5, the multi-spray cases with a hybrid-nozzle arrays which is consisted in all nozzles of nozzle A and B. The results show that the impact force increases approximately twice as much for changing of experimental test cases from E1 to E5 owing to the differences in nozzle characteristics of single-sprays and the overlap region between two adjacent nozzles. For the multi-nozzle spray simulation, the uniformity of impact force (UI) is increased with increasing the number of nozzle B which has larger orifice diameter and a wider spray angle. The optimum multi-nozzle spray arrangement is case S4 with more than 90 % UI, based on the fact that the UI is quite stable with increasing the nozzle pitch ranging from 90 mm to 145 mm.  相似文献   

20.
Since the curvature of free-form surfaces are variable, it is difficult to guarantee the quality of the surface polished with traditional polishing technology. The chief aim of this paper is to investigate the features of an original elastic polishing wheel device. The polishing trajectory of the elastic polishing wheel was simulated to study the relationship between the uniformity of a kind of polishing trajectory and the ratio of rotational speed “i” which is the ratio of the velocity of the rotation and the revolution. Orthogonal experiment was carried out to explore the effect of various factors (rotational ratio, press amount h, speed of rotation, and granularity of abrasive grains) on surface roughness polished. The writer has come to the conclusion that i has an influence on the uniformity of polishing trajectory. The polishing coefficient of variation “CV” of i?=?10.645751 is 32% lower than i?=?10. Increasing the number of digits after the decimal point of i, the polishing track performs more uniform and densely. The experimental tests show that the influence of rotational ratio, press amount h, speed of rotation, and granularity of abrasive grains on surface roughness polished decreases progressively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号