首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new facile method for direct preparation of well-crystallized rutile TiO2 nanoparticles without any ionic impurities was reported. The nanosized TiO2 was prepared by aging a peroxotitanate solution at 100°C for 0–12 h, formed by reaction of H2O2 and titanium tetraisopropoxide (TTIP). The method involves hydrolysis of TTIP and simultaneous digestion of hydrolyzed precipitates, and hydrothermal treatment into crystalline phases. It was found that the TTIP/H2O2 molar ratio in the preparation of peroxotitanate as a precursor for TiO2 was crucial in the formation of a rutile phase. Transmission electron microscope observation for sols showed rod-like shapes with average particle sizes of around 100 nm in the elongated direction.  相似文献   

2.
Dip-coated sol–gel-derived TiO2 films on an alumina substrate were converted to nonstoichiometric titanium nitride (TiN x ( x ≦ 1)) films by heating at approxmately 1000°C in NH3 gas. TiO2 films made from TiO2 sols prepared from Ti(O– i -C3H7)4 and stabilized by diethanolamine were more easily nitrided than those from sols containing HCl as a deflocculant reagent. This appears to be a result of the more porous structure of the former films.  相似文献   

3.
We investigated the structural and optical properties of microporous titanium oxide (TiO2) fabricated by the sol–gel method using templates of colloidal crystals with polystyrene spheres when the annealing temperature was changed between 600° and 1000°C. From X-ray diffraction patterns and SEM images, the rutile TiO2 annealed at a high temperature did not form periodic porous bodies, while the anatase TiO2 annealed at lower than 800°C formed periodic porous bodies. The porous TiO2 obtained acts as an air-sphere/TiO2 photonic crystal with an FCC structure. It is suggested that TiO2 sol annealed at a lower temperature do not lead to phase transition from the anatase phase to the rutile phase to obtain the air-sphere/TiO2 photonic crystal by the sol–gel method using templates of colloidal crystals.  相似文献   

4.
Crystalline TiO2 powders were prepared by the homogeneous precipitation method simply by heating and stirring an aqueous TiOCl2 solution with a Ti4+ concentration of 0.5 M at room temperature to 100°C under a pressure of 1 atm. TiO2 precipitates with pure rutile phase having spherical shapes 200-400 nm in diameter formed between room temperature and 65°C, whereas TiO2 precipitates with anatase phase started to form at temperatures >65°C. Precipitates with pure anatase phase having irregular shapes 2-5 µm in size formed at 100°C. Possibly because of the crystallization of an unstable intermediate product, TiO(OH)2, to TiO2 x H2O during precipitation, crystalline and ultrafine TiO2 precipitates were formed in aqueous TiOCl2 solution without hydrolyzing directly to Ti(OH)4. Also, formation of a stable TiO2 rutile phase between room temperature and 65°C was likely to occur slowly under these conditions, although TiO2 with rutile phase formed thermodynamically at higher temperatures.  相似文献   

5.
Using a multipass extrusion process, continuous porous Al2O3 body (∼41% porosity) was produced and used as a substrate to fabricate continuous porous TiO2/Al2O3 composite membrane. The diameter of the continuous pores of the porous Al2O3 body was about 150 μm. The TiO2 nanopowders dip coated on the continuous pore-surface Al2O3 body existed as rutile and anatase phases after calcination at 520°C in air. However, after aging of the fabricated continuous porous TiO2/Al2O3 composite membrane in 20% NaOH at 60°C for 24 h, a large number of TiO2 fibers frequently observed on the pore surface. The diameter of the TiO2 fibers was about 150 nm having a high specific surface area. However, after 48-h aging period, the diameter of the TiO2 fibers increased, which was about 3 μm. Most of the TiO2 fibers had polycrystalline structure having nanosized rutile and anatase crystals of about 20 nm.  相似文献   

6.
A furnace for use in conjunction with the X-ray spectrometer was developed which was capable of heating small powdered specimens in air to temperatures as high as 1850°C. This furnace was also used for the heating and quenching of specimens in air from temperatures as high as 1850°C. An area of two liquids coexisting between 20 and 93 weight % TiO2 above 1765°± 10°C. was found to exist in the system TiO2–SiO2, which is in substantial agreement with the previous work of other investigators. The area of immiscibility in the system TiO2–SiO2 was found to extend well into the system TiO2–ZrO2–SiO2. The two liquids were found to coexist over a major portion of the TiO2 (rutile) primary-phase area with TiO2 (rutile) being the primary crystal beneath both liquids. The temperature of two-liquid formation in the ternary was found to fall about 80°C. with the first additions of ZrO2 up to 3%. With larger amounts of ZrO2 the change in the temperature of the boundary of the two-liquid area was so slight as to be within the limits of error of the temperature measurement. Primary-phase fields for TiO2 (rutile), tetragonal ZrO2, and ZrTiO4 were found to exist in the system TiO2–ZrO2–SiO2. SiO2 as high cristobalite is known to exist in the system TiO2–ZrO2–SiO2.  相似文献   

7.
After high-temperature reaction between Al2O3 and TiO2 crystals, precipitates found in rutile were characterized by electron microprobe and X-ray diffraction methods and by optical and electron microscopy. The precipitates were identified as α-Al2O4. Geometric and crystallographic orientation relations with the TiO2 matrix constitute a reverse case of rutile precipitation in star sapphire .  相似文献   

8.
Fourier transform infrared analysis, nuclear magnetic resonance, and thermogravimetric analysis show that most of the solid product prepared from the reaction of Ti(OC4H9)4 and excess (CH3CO)2O is a mixture of titanyl organic compounds. Nanocrystalline TiO2 particles, which include anatase TiO2, rutile TiO2, and a mixture of anatase and rutile, can be obtained from hydrolysis of the titanyl organic compounds under normal pressure at 60°C. The particle size, shape, and formation process of the crystals have been studied using X-ray diffraction and transmission electron microscopy. The specific-surface-area data for a rutile TiO2 sample and the powders obtained after calcination at different temperatures have been measured by the Brunauer–Emmett–Teller method.  相似文献   

9.
Anatase-to-Rutile Transformation in Titania Powders   总被引:1,自引:0,他引:1  
Titania (TiO2) is an important electronic ceramic material for use in diverse applications such as gas sensors, catalysts, dielectrics, and ceramic membranes. TiO2 exists as several polymorphic phases, most commonly as rutile or anatase. This paper investigates the microstructural evolution of anatase-based commercial TiO2 powders, with an average size of 100 nm, at high temperatures. These powders transform to the rutile structure at 1000°C. The characteristics of the anatase-to-rutile transformation have been studied using transmission electron microscopy analysis, and new information regarding the nature and mechanisms of this polymorphic reaction has been revealed.  相似文献   

10.
Dopants in Flame Synthesis of Titania   总被引:2,自引:0,他引:2  
The effect of dopants on the characteristics of titania particles made by oxidation of TiCl4 in a laminar diffusion flame reactor is presented. Introduction of dopant SiCl4 inhibits the transformation of anatase to rutile, due to the formation of interstitian solid solution of SiO2 and TiO2. Silica decreases the sintering rate of titania and decreases the primary particle size, and, as a result, the specific surface area increases. Intruduction of SnCl4 enhances the transformation of anatase to rutile, due to the similar crystalline structure of SnO2 and rutile titania. However, the presence of SnO2 and rutile titania. However, the presence of SnO2 does not affect the primary particle size or the specific surface area of titania particles. Introduction of AICI3 enhances the transformation of anatase to rutile, due to the formation of excess oxygen vacancies as Al2O3 and TiO2 form a substitutional solid solution.  相似文献   

11.
The antibacterial activity of photocatalytic titanium dioxide (TiO2) thin films with photodeposited silver on the surface of sanitary ware was studied. Samples were prepared by coating a TiO2 sol that was calcined at 880°–980°C and photodeposited with silver ions onto the glazed layer of the sanitary ware. The relationships between the antibacterial activity and the fabrication conditions were investigated by X-ray diffractometry, scanning electron microscopy, and colorimetry. The phase of TiO2 identified in the thin films was a mixture of anatase and rutile. The amount of rutile phase increased as the calcination temperature increased, and grain growth of the TiO2 particles was observed. The activity was dependent on the TiO2 thickness, the calcination temperature, and the amount of silver. These results suggest that the antibacterial activity was strongly affected by the amount of anatase in the thin films.  相似文献   

12.
TiO2 fibers were formed by thermal treatment of layered H2Ti4O9 (hydrous titanium dioxide) and KHTi4O9 synthesized by ion-exchange reactions. The calcination of the former at 900° and 1050°C for 3 h yielded TiO2 fibers with anatase and rutile phases, whose length and diameter were 15–20 and 2–5 μm and 10–15 and 3–5 μm, respectively. The thermal treatment of the latter at temperatures of 250° to 500°C yielded pure K2Ti8O17, which tended to decompose to K2Ti6O13 and TiO2 at temperatures >600°C. At 1050°C, K2Ti6O13 phase was formed with rutile TiO2 fibers, whose length and diameter were 10–20 and 1–3 μm, respectively.  相似文献   

13.
TiO2/SnO2 nanonecklace-structured hybrid nanofibers have been prepared via an electrospinning method. These hybrid nanofibers are characterized with SnO2-rich beads and pure TiO2 chains. It is found that TiO2 in the beads shows a rutile structure, and the one in the chains is entirely composed of anatase phase. This novel microstructure enhanced the photocatalytic activity, as well as its ideal recyclable character. We believe that this fire-new type of nanofiber may potentially serve as a new generation photocatalyst in environmental remediation.  相似文献   

14.
Subsolidus phase relationships in the Ga2O3–Al2O3–TiO2 system at 1400°C were studied using X-ray diffraction. Phases present in the pseudoternary system include TiO2 (rutile), Ga2−2 x Al2 x O3 ( x ≤0.78 β-gallia structure), Al2−2 y Ga2 y O3 ( y ≤0.12 corundum structure), Ga2−2 x Al2 x TiO5 (0≤ x ≤1 pseudobrookite structure), and several β-gallia rutile intergrowths that can be expressed as Ga4−4 x Al4 x Ti n −4O2 n −2 ( x ≤0.3, 15≤ n ≤33). This study showed no evidence to confirm that aluminum substitution of gallium stabilizes the n =7 β-gallia–rutile intergrowth as has been mentioned in previous work.  相似文献   

15.
A visible-light active TiO2− x S x in rutile structure has been synthesized by means of a mechanochemical method. The method is composed of two steps: the first is grinding the mixture of sulfur and TiO2, and the second is calcining the ground sample at 673 K in an inert gas flow. XPS analysis confirms that sulfur has been successfully doped into TiO2. The calcined sample under irradiation of visible light with wave-length over 510 nm has shown good performance for NO gas destruction, suggesting its high photograph-reactivity.  相似文献   

16.
Flower-like agglomerates with sizes of 200–400 nm of pure and Fe3+-doped TiO2 with rutile crystalline structure were synthesized by the coprecipitation method. The morphology of the agglomerates was determined by electron microscopy (TEM and HRTEM). TiO2 agglomerates consist of nanorods with clearly visible crystalline faces, parallel to the axis of elongation whose direction was along the [101] direction of pure TiO2 and the [111] direction of doped TiO2. Furthermore, nanorods consist of "chains" of spherical particles, most likely interconnected through the so-called oriented attachment or grain-rotation-induced grain coalescence (GRIGC) process. UV/Vis reflection measurements revealed that the absorption of pure TiO2 was significantly shifted from UV toward the visible spectral region upon the incorporation of Fe3+ into the TiO2 host.  相似文献   

17.
(1− x )ZnNb2O6· x TiO2 ceramics were prepared using both anatase and rutile forms of TiO2. At a composition of x = 0.58, a mixture region of ixiolite (ZnTiNb2O8) and rutile was observed and the temperature coefficient of resonant frequency (τf) was ∼0 ppm/°C. We found that although ɛr and τf were comparable, the quality factor ( Q × f , Q ≈ 1/ tan δ, f = resonant frequency) of 0.42ZnNb2O6·0.58TiO2 prepared from anatase and rutile was 6000 and 29 000, respectively. The origin of the difference in Q × f of both samples was investigated by measuring electrical conductivity and by analysis of the anatase–rutile phase transition. The anatase-derived sample had higher conductivity, which was related to the reduction of Ti4+. It is suggested that the increase of dielectric loss originates from an increase in Ti3+ and oxygen vacancies due to an anatase–rutile phase transition.  相似文献   

18.
Anatase-type TiO2 (titania) doped with iron up to 19.8 mol% was directly formed as nanometer-sized particles from acidic precursor solutions of TiOSO4 and Fe(NO3)3 by simultaneous hydrolysis, under mild hydrothermal conditions at 180°3C. Iron content in the anatase-type TiO2 was much less than that of the starting composition of the precursor solutions because of slower hydrolysis rate of Fe(NO3)3 than that of TiOSO4 at 180°3C. The XRD data, TEM selected-area diffraction patterns, and Mössbauer effect measurement showed that iron(III) formed a solid solution in the anatase-type TiO2 precipitates and that there was no iron oxide precipitated as secondary phase without making a solid solution with TiO2 present in the precipitates. Doping of Fe2O3 into TiO2 shifted the phase transformation from anatase-type to rutile-type structure to a low temperature. On the phase transformation from anatase to rutile, iron oxide was precipitated as Fe2TiO5 (pseudobrookite) phase. When the iron content was increased in the anatase phase, onset of optical absorption shifted to longer wavelengths, and absorption in the UV-light region and in the visible-light region over 400–600 nm clearly appeared in the diffuse reflectance spectra of the as-prepared Fe(III)-doped TiO2.  相似文献   

19.
Titania (TiO2) and doped TiO2 ceramic thin films were prepared on a glass substrate by a sol–gel and dip-coating process from specially formulated sols, followed by annealing at 460°C. The morphologies of the original and worn surfaces of the films were analyzed with atomic force microscopy (AFM) and scanning electron microscopy. The chemical compositions of the obtained films were characterized by means of X-ray photoelectron spectroscopy (XPS). The tribological properties of TiO2 and doped TiO2 thin films sliding against Si3N4 ball were evaluated on a one-way reciprocating friction and wear tester. The AFM analysis shows that the morphologies of the resulting films are very different in nanoscale, which partly accounts for their tribological properties. XPS analysis reveals that the doped elements exist in different states, such as oxide and silicate, and diffusion took place between the film and the glass substrate. TiO2 films show an excellent ability to reduce friction and resist wear. A friction coefficient as low as 0.18 and a wear life of 2280 sliding passes at 3 N were recorded. Unfortunately, all the doped TiO2 films are inferior to the TiO2 films in friction reduction and wear resistance, primarily because of their differences in structures and chemical compositions caused by the doped elements. The wear of the glass is characteristic of brittle fracture and severe abrasion. The wear of the TiO2 thin film is characteristic of plastic deformation with slight abrasive and fatigue wear. The doped TiO2 thin films show lower plasticity than the TiO2 thin film, which leads to large cracks. The propagation of the cracks caused serious fracture and failure of the films.  相似文献   

20.
Dense, highly 〈110〉-textured BaTiO3 ceramics were prepared by the reactive-templated grain growth method. Needlelike TiO2 (rutile) particles with their needle axis parallel to 〈001〉 were used as reactive template particles. Slurry containing an equimolar mixture of TiO2 and BaCO3 was tape cast to form a green compact, in which TiO2 particles were aligned with their needle axis parallel to the casting direction. Calcination of the green compact changed TiO2 particles into BaTiO3 grains with their 〈110〉 direction parallel to the casting direction, for which the topotaxial relation of was responsible. Sintering yielded a dense, highly textured BaTiO3 compact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号