首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The measured effects of vegetation canopies on radar and radiometric sensitivity to soil moisture are compared to first-order emission and scattering models. The models are found to predict the measured emission and backscattering with reasonable accuracy for various crop canopies at frequencies between 1.4 and 5.0 GHz, especially at angles of incidence less than 30°. The vegetation loss factor L (?) increases with frequency and is found to be dependent upon canopy type and water content. In addition, the effective radiometric power absorption coefficient of a mature corn canopy is roughly 1.75 times that calculated for the radar at the same frequency. Comparison of an L-band radiometer with a C-band radar shows the two systems to be complementary in terms of accurate soil moisture sensing over the extreme range of naturally occurring soil-moisture conditions. The combination of both an L-band radiometer and a C-band radar is expected to yield soil-moisture estimates that are accurate to better than +/-30 percent of true soil moisture, even for a soil under a lossy crop canopy such as mature corn. This is true even without any other ancillary information.  相似文献   

2.
The reduction in sensitivity of the microwave brightness temperature to soil moisture content due to vegetation cover is analyzed using airborne observations made at 1.4 and 5 GHz. The data were acquired during six flights in 1978 over a test site near Colby, Kansas. The test site consisted of bare soil, wheat stubble, and fully mature corn fields. The results for corn indicate that the radiometric sensitivity to soil moisture S decreases in magnitude with increasing frequency and with increasing angle of incidence (relative to nadir).The sensitivity reduction factor, defined in terms of the radiometric sensitivities for bare soil and canopy-covered conditions Y=1 - Scan/ Ss was found to be equal to 0.65 for normal incidence at 1.4 GHz, and increases to 0.89 at 5 GHz. These results confirm previous conclusions that the presence of vegetation cover may pose a serious problem for soil moisture detection with passive microwave sensors.  相似文献   

3.
An experiment was conducted from an L-band syntheticaperture perture radar aboard space shuttle Challenger in October 1984 to study the microwave backscatter dependence on soil moisture, surface roughness, and vegetation cover. The results based on the anlyses of an image obtained at 21° incidence angle show a positive correlation between scattering coefficient and soil moisture content, with a sensitivity comparable to that derived from the ground radar measurements [1]. The surface roughness strongly affects the microwave backscatter. A factor of 2 change in the standard deviation of surface roughness height gives a corresponding change of about 8 dB in the scattering coefficient. The microwave backscatter also depends on the vegetation types. Under the dry soil conditions, the scattering coefficient is observed to change from about -24 dB for an alfalfa or lettuce field to about -17 dB for a mature corn field. These results suggest that observations with a synthetic-aperture radar system of multiple frequencies ies and polarizations are required to unravel the effects of soil ture,oisre, surface roughness, and vegetation cover.  相似文献   

4.
Effects of Vegetation Cover on the Radar Sensitivity to Soil Moisture   总被引:1,自引:0,他引:1  
Measurements of the backscattering coefficient ?°, made for bare and vegetation-covered fields, are used in conjunction with a simple backscattering model to evaluate the effects of vegetation cover on the estimation accuracy of soil moisture when derived from radar observations. The results indicate that for soil moisture values below 50 percent of field capacity, the backscatter contribution of the vegetation cover limits the radar's ability to predict soil moisture with an acceptable degree of accuracy. However, for moisture values in the range between 50 and 150 percent of field capacity, the measured ?° is dominated by the soil contribution and the effects of vegetation cover become secondary in importance. It is estimated that in this upper soil moisture range, which is the primary range of interest in hydrology and agriculture, a radar soil moisture prediction algorithm would predict soil moisture with an error of less than ±15 percent of field capacity in 90 percent of the cases.  相似文献   

5.
A comparison between active and passive sensing of soil moisture over vegetated areas is studied via scattering models. In active sensing, three contributing terms to radar backscattering can be identified: 1a) the ground surface scatter term; 2a) the volume scatter term representing scattering from the vegetation layer; and 3a) the surfacevolume. scatter term accounting for scattering from both surface and volume. In emission, three sources of contribution can also be identified: 1b) surface emission, 2b) upward volume emission from the vegetation layer, and 3b) downward volume emission scattered upward by the ground surface. As ground moisture increases, terms 1a) and 3a) increase due to increase in permittivity in the active case. However, in passive sensing, term 1b) decreases but term 3b} increases for the same reason. This self-compensating effect produces a loss in sensitivity to change in ground moisture. Furthermore, emission from vegetation may be larger than that from the ground. Hence, the presence of vegetation layer causes a much greater loss of sensitivity to passive than active sensing of soil moisture.  相似文献   

6.
In recent years the detection of soil moisture using remote sensing technology has become of interest to investigators and a variety of state and federal government agencies. The parameter of interest is important in agricultural, meteorological, biological, and hydrological applications. The use of active microwave devices has shown to provide capability for remote measurement from space. Problems do exist however, in isolating moisture information from the effects of other parameters such as roughness and vegetation. Of special concern is the suppression of the roughness effects in the radar return. This paper presents an analysis of airborne cross-polarized radar measurements of agricultural scenes. The relative responses of the system to moisture and surface roughness are presented and compared to predicted responses using radar backscatter models. It is shown that the depolarized model predictions are sensitive to soil moisture, but are much less sensitive to surface roughness effects.  相似文献   

7.
In this paper, the potential of using polarimetric SAR (PolSAR) acquisitions for the estimation of volumetric soil moisture under agricultural vegetation is investigated. Soil-moisture estimation by means of SAR is a topic that is intensively investigated but yet not solved satisfactorily. The key problem is the presence of vegetation cover which biases soil-moisture estimates. In this paper, we discuss the problem of soil-moisture estimation in the presence of agricultural vegetation by means of L-band PolSAR images. SAR polarimetry allows the decomposition of the scattering signature into canonical scattering components and their quantification. We discuss simple canonical models for surface, dihedral, and vegetation scattering and use them to model and interpret scattering processes. The performance and modifications of the individual scattering components are discussed. The obtained surface and dihedral components are then used to retrieve surface soil moisture. The investigations cover, for the first time, the whole vegetation-growing period for three crop types using SAR data and ground measurements acquired in the frame of the AgriSAR campaign.   相似文献   

8.
Synthetic aperture radar (SAR) images of the Earth's terrestrial surface contain geometric and radiometric image effects which are caused by varying terrain elevation and slope. The radiometric effects tend to mask signal variations caused by other physical variables such as soil moisture and surface vegetation type, which are known to influence SAR backscatter signals. As a result, raw SAR images are of limited use in classifying surface vegetation type or quantifying the spatial distribution of soil moisture in regions of terrain relief, The authors present a technique for removing radiometric terrain effects from SAR images. Image correction was carried out in two steps. First, an existing modeling package was used in combination with digital elevation data in order to map the raw image pixels onto a geodetic coordinate system, thereby removing the geometric portion of the image distortion. Radiometric effects were then removed with the aid of a backscatter model which treats the reflected radiation as a combination of diffuse-Lambertian and specular components. Parameters in the backscatter model were determined by comparing two C-band SAR images of a test area in a region of Arctic tundra which were taken from ascending and descending orbit tracks of the ERS-1 satellite. The ascending and descending images displayed reductions in pixel value variance of 30% and 13%, respectively, after processing. Direct comparison of the two test area images reveals a dramatic improvement in image similarity after processing  相似文献   

9.
冬小麦是我国重要粮食作物之一,对冬小麦覆盖地表土壤水分进行监测有助于解决因土壤供水导致的冬小麦歉收和农业用水浪费等问题。为了降低冬小麦覆盖地表土壤水分微波遥感反演过程中冬小麦对雷达后向散射系数的影响,该文基于Sentinel-1携带的合成孔径雷达(SAR)数据和Sentinel-2携带的多光谱成像仪(MSI)数据,结合水云模型,开展冬小麦覆盖地表土壤水分协同反演研究。首先,基于MSI数据,该文定义了一种新的植被指数,即融合植被指数(FVI),用于冬小麦含水量反演;然后,该文发展了一种基于主被动遥感数据的冬小麦覆盖地表土壤水分反演半经验模型,校正冬小麦在土壤水分反演过程中对雷达后向散射系数的影响;最后,以河南省某地冬小麦农田为研究区域,开展归一化水体指数(NDWI)和FVI两种指数与VV, VH, VV/VH 3种极化组合而成的6种反演方式下的土壤水分反演对比实验。结果表明:以FVI为植被指数,能够更好地去除冬小麦在土壤水分反演过程中对雷达后向散射系数的影响;6种反演方式中,FVI与VV/VH组合下的反演效果最优,其决定系数为0.7642,均方根误差为0.0209 cm3/cm3,平均绝对误差为0.0174 cm3/cm3,展示了该文所提土壤水分反演模型的研究价值和应用潜力。  相似文献   

10.
Measurements with Shuttle Imaging Radar B (SIR-B) at 1.28 GHz and an airborne multiple-beam push-broom radiometer at 1.4 GHz were made over a number of agricultural fields near Fresno, California during October 7-10, 1984. These measurements provided a unique data set for studies of microwave emission and backscatter from surfaces of various characteristics. The effects of surface roughness and vegetation (alfalfa and lettuce) were analyzed with respect to the responses of microwave emission and backscatter to soil-moisture variations. A theoretical model (Kirchhoff approximation) was employed to assess these effects. It was found that for microwave emission, the effect of surface roughness is less significant compared to that of vegetation. On the other hand, the surface roughness was shown to play a dominant role compared to the vegetation cover in the microwave backscatterve backscatter. The two roughness parameters in the theoretical model calculations were the surface correlation length and the standard deviation of surface height. These parameters were found to be affected strongly by the soil-texture effect in the emissivity calculations. A disagreement was found between the calculated and the observed scattering coefficients if the measured surface correlation length and standard deviation of surface height were input to the model. Either one of these two parameters had to be modified appreciably to bring a comparability between the measured and calculated scattering coefficients.  相似文献   

11.
The radar backscatter coefficientsigmadegof alfalfa was investigated as a function of both radar parameters and the physical characteristics of the alfalfa canopy. Measurements were acquired with an 8-18 GHz FM-CW mobile radar over an angular range of0deg-70degas measured from nadir. The experimental data indicate that the excursions ofsigmadegat nadir cover a range of nearly 18 dB during one complete growing cycle. An empirical model forsigmadegwas developed, which accounts for its variability in terms of soil moisture, plant moisture, and plant height.  相似文献   

12.
In the radiometric sensing of soil moisture through a forest canopy, knowledge of canopy attenuation is required. Active sensors have the potential of providing this information since the backscatter signals are more sensitive to forest structure. In this paper, a new radar technique is presented for estimating canopy attenuation. The technique employs details found in a transient solution where the canopy (volume-scattering) and the tree–ground (double-interaction) effects appear at different times in the return signal. The influence that these effects have on the expected time-domain response of a forest stand is characterized through numerical simulations. A coherent forest scattering model, based on a Monte Carlo simulation, is developed to calculate the transient response from distributed scatterers over a rough surface. The forest transient-response model for linear copolarized cases is validated with the microwave deciduous tree data acquired by the Combined Radar/Radiometer (ComRAD) system. The attenuation algorithm is applicable when the forest height is sufficient to separate the components of the radar backscatter transient response. The frequency correlation functions of double-interaction and volume-scattering returns are normalized after being separated in the time domain. This ratio simply provides a physically based system of equations with reduced parameterizations for the forest canopy. Finally, the technique is used with ComRAD L-band stepped-frequency data to evaluate its performance under various physical conditions.   相似文献   

13.
根据最新Sentinel-1雷达系统参数及研究区地表参数特点,采用AIEM模型进行数值模拟分析,建立稀疏植被覆被下地表微波散射特征数据库,并在此基础上构建干旱区土壤水分模型.结果表明,1)不同入射角和极化方式下,后向散射系数对土壤含水量(Mv)、组合地表粗糙度(Zs)的响应分别呈明显对数相关,VV极化对土壤水分响应更敏感,最优响应区间范围为Mv 0~30%、Zs 0~0.06 cm.2)初探Sentinel-1雷达数据预处理方法,Gamma MAP滤波去噪最优,模型用于土壤水分空间分布信息提取与研究区同期野外实况具有良好的一致性,符合四月渭-库地区春旱期土壤水分时空分布特征.3)对于0-10 cm表层土壤水分,模拟值同实测值相关系数达到0.76,即该模型对于干旱区绿洲区域尺度表层土壤水分监测具有适用性.  相似文献   

14.
Previous studies have shown the possibility of using European Remote Sensing/synthetic aperture radar (ERS/SAR) data to monitor surface soil moisture from space. The linear relationships between soil moisture and the SAR signal have been derived empirically and, thus, were a priori specific to the considered watershed. In order to overcome this limit, this study focused on two objectives. The first one was to validate over two years of data the empirical sensitivity of the radar signal to soil moisture, in the case of three agricultural watersheds with different soil compositions and land cover uses. The slope of the observed relationship was very consistent. Conversely, the offset could change, making the soil moisture retrieval only relative (and not absolute). The second one was to propose an "operational" methodology for soil moisture monitoring based on ERS/SAR data. The implementation of this methodology is based on two steps: the calibration period and the operational period. During the calibration period, ground truth campaigns are performed to measure vegetation parameters (to correct the SAR signal from the vegetation effect), and the ERS/SAR data is processed only once a field land cover map is established. In contrast, during the operational period, no vegetation field campaigns are performed, and the images are processed as soon as they are available. The results confirm the relevance of this operational methodology, since no loss of performance (in soil moisture retrieval) is observed between the calibration and operational periods.  相似文献   

15.
The Seasat satellite acquired the first spaceborne synthetic-aperture radar (SAR) images of the earth's surface, in 1978, at a frequency of 1.275 GHz (L-band) in a like-polarization mode at incidence angles of 23 ± 30. Although this may not be the optimum system configuration for radar remote sensing of soil moisture, interpretation of two Seasat images of Iowa demonstrates the sensitivity of microwave backscatter to soil moisture content. In both scenes, increased image brightness, which represents more radar backscatter, can be related to previous rainfall activity in the two areas. Comparison of these images with ground-based rainfall observations illustrates the increased spatial coverage of the rainfall event that can be obtained from the satellite SAR data. These data can then be color-enhanced by a digital computer to produce aesthetically pleasing output products for the user community. When the methodology for extracting accurate information about soil moisture status from radar data is developed, it will prove useful in a wide variety of agronomic and hydrological investigations.  相似文献   

16.
雷达遥感具有全天时、全天候监测的能力,对植被具有一定的穿透能力,对植被散射体形状、结构、介电常数敏感;这些特性使得其在农业应用中极具潜力。该文首先介绍了雷达遥感在农业中的应用领域,概略总结了目前在农作物识别与分类、农田土壤水分反演、农作物长势监测等多个领域研究的综述文献;然后分别阐述了雷达散射计和各类SAR特征(包括:SAR后向散射特征、极化特征、干涉特征、层析特征)在农业各领域中应用的现状和取得的研究成果,最后结合农业应用需求和SAR技术发展总结了目前研究中存在的问题和原因,并对未来的发展进行了展望。   相似文献   

17.
The goal of the Soil Moisture and Ocean Salinity mission over land is to infer surface soil moisture from multiangular L-band radiometric measurements. As the canopy affects the microwave emission of land, it is necessary to characterize different vegetation layers. This paper presents the Reference Pixel L-Band Experiment (REFLEX), carried out in June-July 2003 at the Vale/spl grave/ncia Anchor Station, Spain, to study the effects of grapevines on the soil emission and on the soil moisture retrieval. A wide range of soil moisture (SM), from saturated to completely dry soil, was measured with the Universitat Polite/spl grave/cnica de Catalunya's L-band Automatic Radiometer (LAURA). Concurrently with the radiometric measurements, the gravimetric soil moisture, temperature, and roughness were measured, and the vines were fully characterized. The opacity and albedo of the vineyard have been estimated and found to be independent on the polarization. The /spl tau/--/spl omega/ model has been used to retrieve the SM and the vegetation parameters, obtaining a good accuracy for incidence angles up to 55/spl deg/. Algorithms with a three-parameter optimization (SM, albedo albedo, and opacity) exhibit a better performance than those with one-parameter optimization (SM).  相似文献   

18.
以Landsat 7 ETM+、SPOT 5和IKONOS遥感影像数据为数据源,利用格网法从1∶500地形图提取的不同空间分辨率的植被覆盖度为参考依据,通过对不同辐射校正水平的遥感影像获得的植被覆盖度进行精度比较分析,对多源多尺度和多源同尺度城市植被覆盖度估算的相关问题进行研究.研究表明,在城市区域进行植被覆盖度估算时,ICM模型为较佳辐射校正模型;对于高分辨遥感影像,NDVI为植被覆盖度估算的较佳植被指数;对于中分辨率影像,植被覆盖度估算的较佳植被指数则为RVI和MSAVI;就研究区而言GI模型比CR模型估算的植被覆盖度更准确.  相似文献   

19.
The soil moisture experiments held during June-July 2002 (SMEX02) at Iowa demonstrated the potential of the L-band radiometer (PALS) in estimation of near surface soil moisture under dense vegetation canopy conditions. The L-band radar was also shown to be sensitive to near surface soil moisture. However, the spatial resolution of a typical satellite L-band radiometer is of the order of tens of kilometers, which is not sufficient to serve the full range of science needs for land surface hydrology and weather modeling applications. Disaggregation schemes for deriving subpixel estimates of soil moisture from radiometer data using higher resolution radar observations may provide the means for making available global soil moisture observations at a much finer scale. This paper presents a simple approach for estimation of change in soil moisture at a higher (radar) spatial resolution by combining L-band copolarized radar backscattering coefficients and L-band radiometric brightness temperatures. Sensitivity of AIRSAR L-band copolarized channels has been demonstrated by comparison with in situ soil moisture measurements as well as PALS brightness temperatures. The change estimation algorithm has been applied to coincident PALS and AIRSAR datasets acquired during the SMEX02 campaign. Using AIRSAR data aggregated to a 100-m resolution, PALS radiometer estimates of soil moisture change at a 400-m resolution have been disaggregated to 100-m resolution. The effect of surface roughness variability on the change estimation algorithm has been explained using integral equation model (IEM) simulations. A simulation experiment using synthetic data has been performed to analyze the performance of the algorithm over a region undergoing gradual wetting and dry down.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号