首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以TiO_2粉末和NaOH为原料,在机械外力场作用下,采用水热法制备TiO_2纳米线。随后将得到的TiO_2纳米线与六水合硝酸钴(Co(NO_3)_2·6H_2O)和尿素(Urea)共同水热反应制备TiO_2/Co_3O_4纳米结构材料。分别利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、电池充放电测试仪和电化学工作站等,对材料的相组成、微观形貌、锂电性能和阻抗性能进行测试。结果表明,TiO_2/Co_3O_4纳米复合材料为鸟巢状结构,其在33.5mA/g电流密度下恒电流充放电的首次放电容量为777mAh/g,充电容量为759mAh/g,100次循环后的可逆容量仍保持在663mAh/g,具有良好的循环稳定性和电化学特性。  相似文献   

2.
利用球型Ni(OH)2、纳米Co3O4和Al(NO3)3,低温预烧结,固相合成高性能LiNi0.80Co0.15Al0.05O2正极材料.通过XRD,SEM对样品进行结构和形貌研究,采用TG对样品进行热分析,结果显示在空气气氛下,该固相合成的LiNi0.80Co0.15Al0.05O2材料具有良好的层状结构,反映层状结构的006/012和018/110两组峰分裂明显.CV测试结果显示,样品具有良好的氧化还原性.将样品制备成扣式电池进行充放电测试,540℃预烧结12 h,720℃烧结26 h样品表现出最佳电化学性.0.2 C倍率下,首次放电容量达到184.5 mAh/g,首次库伦效率为86.6%,测试结果高于传统固相法;1 C倍率充放电,首次放电容量为159.9 mAh/g,50次循环后容量保持率达到96%,样品具有良好的循环性能.  相似文献   

3.
用溶胶-凝胶法首次合成了富锂正极材料Li[Li0.2Ni0.16Mn0.56Co0.06Al0.02]O2,它可以看成是Li[Li1/3Mn2/3]O2和LiNi0.4Mn0.4Co0.15Al0.05O2形成的固溶体。XRD测试表明该材料具有ɑ-NaFeO2层状结构,用SEM观察材料粒径为100nm左右。充放电测试得到,材料在2~4.8V范围内,0.1C的电流下,20℃时,首次放电比容量达221.8mAh/g,库伦效率为85.3%;55℃时,首次放电比容量达281.7mAh/g,库伦效率为93.0%;且该材料具有很好的循环稳定性及优良的倍率性能。通过循环伏安测试分析了该材料的充放电机理。  相似文献   

4.
以Li0.5La0.5TiO3为包覆物,制备了固体电解质包覆的LiNil/3Co1/3Mnl/3O2正极材料。采用XRD、SEM对材料进行了表征:XRD显示未包覆的材料具有α-NaFeO2层状结构,粒径在200~300nm之间,包覆后材料粒径略有增大,包覆层具有ABO3型固体电解质结构。包覆层的致密程度及材料的循环稳定性与热处理温度有关。包覆后400℃热处理得到的材料首次放电比容量为185mAh/g,较未包覆材料容量有所提高,50次循环后其容量仍能达到156.5mAh/g,表明包覆物Li0.5La0.5TiO3对LiNil/3Co1/3Mnl/3O2具有保护作用。  相似文献   

5.
采用高温固相法制备样品Li1.12Ni0.8Mn0.1Co0.1O2,采用XRD(X-ray diffraction)、SEM(Scanning electron microscope)、CV(Cycle voltammograms)和充放电循环等测试分析了材料的物理化学性质及电化学性能。XRD分析表明在合成温度为800℃时,所合成的产物为α-NaFeO2型的层状结构;SEM分析表明在合成温度为800℃时,产物为微小晶粒团聚成的球形颗粒。在40mA/g和2.5~4.3V的电压范围内,其首次放电比容量为184.1mAh/g,首次放电效率为85.9%。随着充放电次数的增多,材料的不可逆放电容量逐步减小,循环稳定性增强。循环20周后放电比容量仍能达到171.7mAh/g,容量保持率为93.26%。测试结果表明,800℃合成的正极材料Li1.12Ni0.8-Mn0.1Co0.1O2具有较高的放电比容量和优异的电化学稳定性。  相似文献   

6.
以氨水为络合剂,NaOH为沉淀剂,通过共沉淀制备了高致密、粒度均匀的球形前驱体Ni0.8Co0.1Mn0.1(OH)2.通过焙烧该前驱体和LiOH.H2O的混合物制备出球形锂离子电池正极材料LiNi0.8Co0.1Mn0.1O2.采用XRD、SEM、TEM、TGA/DSC以及恒流充放电测试对材料的结构、形貌和电化学性能进行表征.结果表明,球形前驱体是由纳米级一次颗粒团聚形成,而不是晶粒的长大,且反应时间对前驱体的形貌、粒径分布及振实密度有显著影响.750℃焙烧16 h后的正极材料,保持了完好的球形形貌,具有最佳的层状结构和电化学性能,振实密度最大(2.98 g/cm3),首次放电容量为202.4 mAh/g,倍率性能佳,在3C的放电电流下容量为174.1 mAh/g,且循环性能优良,在40次循环以后,放电容量保持率为92.3%.  相似文献   

7.
LiNi0.9Co0.1O2正极材料的EDTA络合法合成及其性能研究   总被引:1,自引:0,他引:1  
采用络合法制备了锂离子电池的活性正极材料LiNi0.9Co0.1O2粉体,实验表明合成的LiNi0.9Co0.1O2粉体结晶良好,层状结构发育完善.电池充放电测试结果表明,其容量及循环性能与LiNi0.9Co0.1O2粉体的合成温度有关,其中900℃合成得到的LiNi0.9Co0.1O2材料具有最好的电化学性能,首次放电比容量高达120.5mAh/g,循环30次后可逆放电比容量仍高达118.8mAh/g,容量损失仅为1.4%.文中对容量退化的原因进行了分析.  相似文献   

8.
杜运  张海朗 《化工新型材料》2013,41(3):101-103,107
采用溶胶-凝胶法合成层状正极材料Li[Li0.2Mn0.54Ni0.13Co0.13-xAlx]O2(x=0,0.05,0.13)。用X射线衍射(XRD)、循环伏安(CV)和充放电测试等手段对产物的结构及电化学性能进行了表征。结果表明:采用溶胶-凝胶法在900℃空气氛围下煅烧12h制备的Li[Li0.2Mn0.54Ni0.13Co0.08Al0.05]O2晶型较好,具有α-NaFeO2型层状结构。室温,2.0~4.8V下,0.1C倍率下最高放电比容量达到268.3mAh/g,0.2C倍率下循环50次后比容量依然高达238.1mAh/g,具有良好的电化学性能。  相似文献   

9.
以自制(Ni0.4Co0.2Mn0.4)(OH)2为前驱体,采用高温固相法合成了锂离子电池正极材料LiNi0.4Co0.2-Mn0.4O2,采用粉末X射线衍射(XRD)、扫描电镜(SEM)对材料结构和形貌进行了表征,表明所得材料外观为球形,具有典型的α-NaFeO2层状结构,循环伏安、恒电流充放电测试表明,800℃下合成的材料具有最优的电化学性能,首次放电比容量达161.8mAh/g。  相似文献   

10.
通过固相自引发基团置换反应——流变相法制备出层状LiNi1/3Co1/3Mn1/3O2正极材料,研究了不同烧结温度对材料的结构特性、微观形貌以及电化学性能的影响。结果表明,850℃煅烧20h的样品具有最佳的二维层状结构和阳离子有序度,产物颗粒呈球形,分布均匀,平均粒径约250nm。在2.8~4.3V区间,以80mA/g充放电,首次放电比容量为169mAh/g,30次循环后容量保持率为82.6%。将充电截止电压提高至4.4V,材料的前几次放电容量明显提高,以32mA/g充放电,10次循环后的放电比容量为174mAh/g,其后容量衰减加快,循环稳定性变差。  相似文献   

11.
以Ni(CH3COO)2·4H2O和Mn(CH3COO)2·4H2O为原料,分别在400、500℃分解3、7h得到镍锰复合氧化物前驱体,再与锂源Li2CO3混匀,在800℃煅烧12h,600℃退火24h得到LiNi0.5Mn1.5O4正极材料。XRD、SEM、EIS和恒流充放电测试结果表明,在400℃、7h制备的前驱体与Li2CO3合成的LiNi0.5Mn1.5O4性能最佳。室温下以0.1C倍率充放电,首次放电比容量达到141.5mAh/g,循环30次后容量保持率为98.55%;以1C倍率充放电,首次放电比容量为120.34mAh/g,循环30次后放电比容量为112.09mAh/g。  相似文献   

12.
以Ni(NO3)2·6H2O,Co(NO3)2·6H2O,Mn(CH3COO)2·4H2O,LiOH·H2O为原料,采用NaOH-Na2CO3共沉淀的方法,在空气中合成了三元层状锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用XRD研究了所合成材料的结构.考查了不同烧结温度对材料电化学性能的影响.结果表明,所合成的材料具有典型的α-NaFeO2层状结构特征,900℃下合成的材料具有最优的循环性能,初始放电容量为169.4mAh/g,初次库仑效率为83.2%,且20次循环后,容量保持率达到96.3%.  相似文献   

13.
以Li0.5La0.5TiO3为包覆物,制备了固体电解质包覆的LiNi1/3Co1/3Mn1/3O2正极材料.采用XRD、SEM对材料进行了表征:XRD显示未包覆的材料具有α-NaFeC2层状结构,粒径在200~300nm之间,包覆后材料粒径略有增大,包覆层具有ABO3型固体电解质结构.包覆层的致密程度及材料的循环稳定性与热处理温度有关.包覆后400℃热处理得到的材料首次放电比容量为185mAh/g,较未包覆材料容量有所提高,50次循环后其容量仍能达到156.5mAh/g,表明包覆物Li0.5La0.5TiO3对LiNi1/3Co1/3Mn1/3O2具有保护作用.  相似文献   

14.
采用草酸盐共沉淀法,结合高温固相反应法,合成了LiNix Mn0.8-x Co0.2O2(x=0.4,0.5)粉末材料,考察了焙烧时间和镍含量对LiNix Mn0.8-x Co0.2O2(x=0.4,0.5)结构与性能的影响。采用XRD、SEM和电池充放电测试方法等表征了材料的结构与性能。结果表明,800℃焙烧20h制备的LiNi0.5Mn0.3Co0.2O2具有良好的层状结构和综合电化学性能,阳离子混排程度小、六角晶格有序性好。0.2C倍率首次入放电容量为151mAh/g,循环20次后放电容量为148.4mAh/g。SEM结果表明LiNi0.5Mn0.3Co0.2O2是由0.5μm的一次颗粒组成,LiNi0.4Mn0.4Co0.2O2材料由0.5μm的一次颗粒团聚而成约8μm的二次颗粒组成。  相似文献   

15.
以NaOH和NH3.H2O为共沉淀剂,采用共沉淀法合成了前驱体Ni1/3Co1/3Mn1/3(OH)2,将前驱体与LiOH.H2O混合球磨,经过高温处理(500℃下预烧4h,然后在900℃下焙烧12h)得到锂离子电池(LIB)正极材料LiNi1/3Co1/3Mn1/3O2。考察了前驱体合成过程中还原剂水合肼对前驱体组成及正极材料电化学性能的影响,采用SEM观测前驱体的形貌,XRD分析正极材料粉末的层状结构并计算其晶胞参数,通过充放电实验测试LIB正极材料的电化学性能。结果表明,当水合肼浓度为0.48mol/L时,所得正极材料具有良好的电化学性能,在2.5~4.6V电压范围内及0.1和1C倍率下,其首次放电比容量分别为193.2和174.8mAh/g;1C倍率下经30次循环后其容量为164.6mAh/g,容量保持率为94.16%。  相似文献   

16.
以氢氧化钠为沉淀剂,采用共沉淀法合成了Ni1/3Co1/3Mn1/3(OH)2前驱体,前驱体和LiOH·H2O充分混合高温烧结制备了锂离子电池正极材料LiNi1/3Co1/3Mn1/3O2.采用X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学性能测试对LiNi1/3Co1/3Mn1/3O2正极材料的结构、微观形貌及电化学性能进行了表征.XRD结果表明,所合成的LiNi1/3Co1/3Mn1/3O2物相单一无杂相,具有标准的α-NaFeO2型层状结构.SEM测试显示,颗粒粒度均一,粒径大约在0.5μm,粒径分布窄.以20mA/g电流密度放电,充放电电压在2.8~4.4 V之间,首次放电比容量达到181mAh/g,80次循环之后放电比容量仍然保持在172mAh/g;循环伏安测试显示,LiNi1/3Co1/3Mn1/3O2反应中主要是Ni2 /Ni4 、Co3 /Co4 2个电对在起作用,锰的价态保持不变,起到支撑结构的作用.  相似文献   

17.
采用溶胶-凝胶法,以聚丙烯酸为络合剂制备纳米尺寸的锂离子电池LiNi1/3Co1/3Mn1/3O2正极材料。考察了聚丙烯酸与阳离子配比和烧结温度对产物LiNi1/3Co1/3Mn1/3O2结构与电化学性能的影响。结果表明,烧结温度700℃可制备出晶体发育完整,粒径为80nm,分布均匀的α-NaFeO2层状结构的LiNi1/3Co1/3Mn1/3O2。当聚丙烯酸与金属阳离子摩尔比值为0.75,首次放电比容量达到169.2mAh/g,30次循环后容量保持率为89.3%。  相似文献   

18.
孙杰  赵东林  刘辉  景磊  迟伟东  沈曾民 《功能材料》2012,43(15):2027-2030
以二茂铁为铁源,石油渣油为碳源,通过加压热解和空气氧化制备了碳包覆空心Fe3O4纳米粒子。采用X射线衍射(XRD)、透射电镜(TEM)以及高倍透射电镜(HRTEM)等测试方法对样品的形貌和结构进行表征。采用恒流充放电和交流阻抗方法测试碳包覆空心Fe3O4纳米粒子作为锂离子电池负极材料的电化学性能。在电流密度为0.2mA/cm2时,首次放电比容量高达1294.7mAh/g,30次循环之后其放电比容量为392.1mAh/g;电流密度为1mA/cm2时,首次放电比容量为216.3mAh/g,30次循环之后其放电比容量为113mAh/g。  相似文献   

19.
使用Li(AC)、Mn(AC)2和Co2O3为原料,通过高温固相两段烧结合成法合成了LiCoxMn2-xO4(x=0;0.1;0.2;0.3)锂离子二次电池正极材料。合成条件:n(Li)∶n(Mn)∶n(Co)=1.2∶2-x∶x,首次烧结温度450℃,烧结时间6h;二次烧结温度750℃,煅烧时间为72h。对合成材料进行了XRD结构表征、SEM表面形貌表征和充放电测试及循环伏安测试。结果表明:合成a、b、c、d 4组样品为尖晶石结构,合成产物无杂质,结晶度较高;样品粉末的SEM图表明:尖晶石LiCoxMn2-xO4颗粒表面形貌为球形结构,没有尖锐突起,颗粒大小为400nm左右。掺杂Co3+合成的正极材料在充放电倍率为0.2C时,首次充放电容量分别为:82mAh/g、80mAh/g;经过50次循环时,充放电容量分别为80mAh/g、79mAh/g。在充放电倍率为0.5C时,首次充放电容量分别为72mAh/g、70mAh/g,经过50次循环时,充放电容量分别为70mAh/g、69mAh/g。  相似文献   

20.
采用草酸盐共沉淀法合成了锂离子电池用Li(Ni1/3Co1/3Mn1/3)O2-xFx(x=0,0.03,0.05,0.1)粉末材料,考察了掺杂氟对Li(Ni1/3Co1/3Mn1/3)O2结构与性能的影响。采用XRD、SEM和电池充放电循环测试方法等表征了Li(Ni1/3Co1/3Mn1/3)O2-xFx材料的结构与性能。结构表明,950℃焙烧10h制备的Li(Ni1/3Co1/3Mn1/3)O1.97F0.03材料具有较好的层状结构与综合电化学性能,阳离子混合度小、六角晶格有序性高,颗粒的平均粒径为2~3μm。I003/I104为1.29,R值为0.42,首次放电容量为141.7mA·h/g(2.8~4.2V,0.2C倍率),首次充放电容量效率为82.4%,0.2C倍率循环30次后的放电容量为首次放电容量的95.6%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号