首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用CHI660B型电化学工作站研究了4种不同成分(Zr55Al10Ni5Cu30,Zr60Al15Ni25,Zr65Al10Ni10Cu15,Xr52.5Al0Ni10Cu15Be12.5)的锆基非晶态合金以及其中两种成分(Zr65Al10Ni10Cu15,Zr52.5Al10Ni10Cu15Be12.5)的晶态合金在2.5mol/L的HCl溶液中的腐蚀行为。通过Tafel曲线的测试结果表明,非晶合金的耐腐蚀性能与其成分有很大的关系,这4种非晶合金试样的耐腐蚀性由强到弱的顺序依次为Zr60Al15Ni25〉Zr65Al10Ni10CU15〉Zr52.5Al10Ni10Cu15Be12.5〉Zr55Al10Ni5Cu30。两种成分的非晶态合金与其对应成分的晶态试样相比,非晶态合金具有较低的腐蚀电流,显示出较好的耐腐蚀性。最后,根据电化学腐蚀原理,从合金的微观结构、化学成分以及腐蚀介质的性质3个方面探讨了影响合金耐腐蚀性的因素。  相似文献   

2.
吴志方 《材料导报》2013,27(8):101-104
采用DSC、TGA、XRD等实验手段研究了大块非晶合金Zr55Cu30Al10Ni5各种状态的氧化行为。结果表明非晶态样品的氧化速率最快,稳定晶化态样品的氧化速率最慢,这说明晶态相Zr2Cu具有良好的抗氧化性。非晶态和晶态样品的氧化动力学均遵循线性规律。  相似文献   

3.
Zr基大块非晶合金成分的等电子浓度和等原子尺寸判据   总被引:6,自引:0,他引:6  
制备了6种合金Zr65.5Al5.6Ni6.5Cu22.4,Zr65.3Al6.5Ni8.2Cu20,Zr65Al7.5Ni10Cu7.5,Zr64.8Al8.3Ni11.4Cu5.5,Zr64.5Al9.2Ni13.2Cu13.1和Zr63.8Al11.4Ni17.2Cu7.6,共晶成分位于合金Zr64.5Al9.2Ni13.2Cu13.1和合金Zr63.8Al11.4Ni17.2Cu7.6的成分之间,这6种合金均显示了非晶相的形成和较宽的过冷液相区范围△Tx值,以及较大的约化玻璃转变温度Trg值,除合金Zr63.8Al11.4Ni17.2Cu7.6的△Tx值为87K外,其余5种成分合金的△Tx值均在97K以上,最宽的达105K,表明这6种合金是一个具有大玻璃形成能力和高热稳定性的非晶合金系列,合金Zr63.8Al11.4Ni17.2Cu7.6是6种合金中玻璃表成能力和热稳定性最高的,其Tg,Tx和Trg值最高,Inoue非晶合金Zr65Al7.5Ni10Cu17.5并不是最佳非晶成分,提出以等电子浓度和等原子尺寸规律作为设计大块非晶合金成分的判据。  相似文献   

4.
大块非晶合金Zr55Cu30Al10Ni5的电子结构特征及电击穿行为   总被引:1,自引:0,他引:1  
测定了大块非晶合金Zr55Cu30Al10Ni5晶化前后的费米能级和各元素的电子结合能,研究了非品合金的电子结构特征和电击穿行为.测试并讨论了非晶材料场发射能力和耐电压强度的关系.结果表明,对于Zr基合金,非品态比品态合金具有更大的功函数.比较了Zr55Cu30Al10Ni5合金非晶态与晶态的耐电压强度数值,发现非晶态合金的耐电压强度数值比较分散,品化合金的耐电压强度相对比较集中.耐电压强度平均值表明,Zr基合金非晶态具有更好的耐电压能力.  相似文献   

5.
为了进一步提高铜基大块非晶合金的玻璃形成能力及力学性能,采用添加微量Al元素的方法对块体非晶合金Cu52.5Ti30Zr11.5Ni6进行了成分优化.热分析与X射线衍射结果显示,随着微量Al的添加,液相线温度从非晶合金Cu52.5Ti30Zr11.5Ni6的1150 K逐步降低到Cu50.5Ti30Zr11.5Ni6Al2的1134 K,临界直径相应的从5 mm提高到6 mm.大块非晶Cu50.5Ti30Zr11.5Ni6Al2的压缩断裂强度达到2286 MPa,比经典的铜基非晶合金Cu47Ti34Zr11Ni8提高约100 MPa,表明微量Al的添加在有效提高玻璃形成能力的同时,强度也略有提高.  相似文献   

6.
The effect of pressure on the variation of the crystallization phases of the Zr55u30Al10Ni5 bulk glass and its thermal stability under high pressure annealing was investigated by X-ray diffraction (XRD)and differential scanning calorimeter(DSC).The mode of crystallization and products of crystallization of the Zr55Cu30Al10Ni5 bulk glass were quite different pressure.At ambient pressure,the crystallization products consisted of NiZr2 and CuZr2,while at pressure of 1 Gpa and 3 Gpa,the alloys crystallized into NiZr2 and Cu10Zr7,respectively.The alloy was nearly not crystallized and only a small amount of Cu10Zr7 was precipitated under 5 Gpa.DSC proved that the mode of the crystallization under high pressure was different from that at ambient pressure.  相似文献   

7.
Ti40Zr10Cu36Pd14金属玻璃具有较好的玻璃化形成能力和可靠的生物力学性能,但生物活性较差。采用溶胶凝胶法在Ti40Zr10Cu36Pd14金属玻璃表面构建TiO2涂层,并进行水热处理使其具有锐钛矿结构;随后又在模拟体液(SBF)中进行仿生生长实验。采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和激光显微拉曼光谱仪(Raman)等观察和分析涂层表面形貌及物相组成。结果表明,TiO2涂层可改善Ti40Zr10Cu36Pd14金属玻璃试样表面生物活性;在模拟体液中浸泡7天后,覆盖TiO2涂层的金属玻璃可快速诱导磷灰石沉积,在金属玻璃基体表面形成HA/TiO2复合涂层。  相似文献   

8.
利用铜模铸造方法制备了具有大过冷液相温度区间的Cu-Zr-Ti-Ni系高强度Cu基大块非晶合金,对于Cu55Zr55Ti15Ni5合金,最大直径达5mm.过冷液相区温度范围ΔTx达45.48~70.98 K.Cu基玻璃合金棒表现出非常高的机械性能和明显的塑性,对于Cu50Zr25Ti15Ni10、Cu55Zr25Ti15Ni5和Cu54Zr22Ti18Ni6合金,压缩断裂强度分别达2155MPa、2026MPa和1904MPa,维氏硬度分别达674、678和685.加入Co元素扩大了CuZr-Ti-Ni系合金的ΔTx,Cu50Zr22Ti18Ni6Co4合金的ΔTx高达74.5K.  相似文献   

9.
用渗流铸造法制备Zr55Al10Ni5Cu30非晶复合材料   总被引:7,自引:0,他引:7  
用渗流铸造法制备出以Zr55Al10Ni5Cu30合金为基体,以W丝束为增强相的大块非晶复合材料,采用X-射线衍射分析了基体的相组成,在扫描电镜(SEM)下观察了反应界面的形貌,利用电子探针研究了元素的迁移情况,通过改变渗流温度和时间。研究了W丝和基体间界面的作用过程,选择适当的渗流温度和时间,可以制备出长65mm直径4.3mm的大块W丝束增强Zr55Al10Ni5Cu30非晶复合材料,在一定范围内提高渗流温度降低渗流时间或降低渗流温度延长渗流时间能得到同样的结果,在渗流铸造前,液态金属的过热有利于提高基体的非晶形成能力,降低渗流铸造时产生的缺陷。  相似文献   

10.
以金属玻璃切削过程中的屈服形变为研究对象,引入源于岩土领域的M-C屈服准则来解决传统Treaca准则及Mises准则不能反映金属玻璃的应力敏感性问题。另外鉴于金属玻璃的温度敏感特性以及切削加工时较高的切削温升,将经过温度修正的改进型M-C屈服准则应用于金属玻璃的切削模型之中。切削力实验表明,基于传统屈服准则、不含温度项的M-C屈服准则以及经过温度修正的M-C屈服准则所建立的切削力模型中,后者的解析解与切削力实测值相比误差最小(平均误差8.92%),说明经过温度修正的M-C屈服准则可以较好地反映金属玻璃切削加载的切削力及材料形变过程,为后续金属玻璃切削机理的深入研究奠定了理论基础。  相似文献   

11.
大块非晶合金又称大块金属玻璃,是一种具有特殊结构与性能的新型金属材料.本文利用同步辐射XRD技术研究了常压和11.6GPa压力下Zr41.2Ti13.8Cu12.5Ni10Be22.5大块非晶合金结构以及0~50GPa压力范围内Fe60Co10Zr8Mo5Nb2B15大块非晶形成合金结构特征的演变.另外,利用同步辐射XRD研究了冲击波处理和水淬条件下制备的Zr41.2Ti13.8Cu12.5Ni10Be22.5大块非晶合金微观原子构型的差异.研究表明,压力与制备条件对大块非晶合金的结构均有一定影响,本研究对深入了解大块非晶合金结构本质及进一步开发该类材料具有重要理论和现实意义.  相似文献   

12.
大块非晶合金的性能、制备及应用   总被引:4,自引:0,他引:4  
综述了大块非晶合金的性能、制备方法及应用,对比了吸铸法制备的棒状Zr41.2Ti13.8Cu12.5Ni10Be22.5,Zr57Cu20Al10Ni8Ti5,Zr52.5Ti5Cu17.9Ni14.6Al10(原子分数)大块非晶样品的过冷温度区间宽度(△Tx),给出了3种大块非晶合金系列的热稳定性参数Tg、Tx及△Tx,提出了大块非晶合金领域存在的问题及发展方向.  相似文献   

13.
利用晶胞平移和分子动力学模拟建立了Zr4lTil3.8Be22.5Ni17.5Cu5.2晶态和非晶合金的原子结构模型,利用递归方法研究了Zr4lTi13.8Be22.5Ni17.5Cu5.2晶态及非晶态合金中元素的替代效应.Be与B、Al、Si状态密度形状相似表明Be与B、Al、Si具有相似的性质,可以用Al、B、Si代替Be;非晶态相对于晶态的结构能差表明,用Al、B、Si代替Be后均使合金的非晶形成能力下降,只是Al、B下降的幅度较小;用Al、B替代Be,再用其它过渡金属替代Cu、Ni或zr、Ti可使非晶形成能力达到含Be合金的水平.  相似文献   

14.
应用铜模真空吸铸法制备直径达5mm的棒状新型Zr57Nb5Cu154Ni12.6Al10大块非晶样品.X射线衍射检测证明样品完全为非晶态.通过等温示差扫描量热法(DSC)测试了Zr57Nb5Cu15.4Ni12.6Al10大块非晶的晶化动力学效应,同时研究了大块非晶合金的室温单轴压缩变形和断裂行为.结果表明:Zr57Nb5Cu15.4Ni12.6Al10块体非晶晶化过程具有动力学效应;其室温压缩变形过程主要表现为弹性变形;断裂面与压缩方向约呈45°,断口呈现典型的脉状花样.  相似文献   

15.
吴志方 《材料导报》2011,(2):262-265
论述了热分析动力学的基本研究方法,着重从常用的热分析动力学方程、激活能的求解、反应机理函数的获取方法等方面作了阐述。并以Zr55Cu30Al10Ni5大块非晶合金为例,探讨了热分析动力学的具体应用,包括晶化激活能的求解和动力学机理函数的确定。  相似文献   

16.
为了研究Zr55Cu30Al10Ni5大块非晶合金在过冷液相区的尺寸效应,进行了温度为421,431,441,451℃,应变速率为0.01,0.005,0.002,0.001s-1,尺寸为3,2,1,0.6mm下共计64组的压缩试验。根据得到的力和位移曲线求出真实应力应变曲线,分析曲线得到稳态流动应力、应力过冲峰值、应...  相似文献   

17.
由于应力软化和表面快速扩散效应,超声振动可以用于金属玻璃微成型.然而,超声振动下的结构重排及其对金属玻璃力学响应机制的影响仍不清楚.本工作采用纳米压痕方法研究了超声振动能量为140 J的Zr(35)Ti(30)Cu(8.25)Be(26.75)金属玻璃的塑性流动行为.我们采用Kelvin和Maxwell-Voigt模型...  相似文献   

18.
根据等电子浓度和等原子尺寸判据设计了四种Zr Ti-Al-Ni系合金,并用激光诱导燃烧合成的方法制备了材料研究发现,其合成产物主要由金属间化合物和Ti/Zr固溶体组成,在成分Zr55Ti1o 8Al171Ni17 1和Zr50Ti21 6Al14 2Ni14 2中还出现了非晶相.合成产物的硬度和摩擦磨损特性与相组成有密切的关系,非晶含量越大,合金硬度值越低,平均摩擦系数越高.  相似文献   

19.
目的 快速优化出无缺陷非晶合金激光增材制造工艺。方法 以Zr51Ti5Cu25Ni10Al9非晶合金为模型材料,利用超声波对金属内部缺陷的衰减,来快速筛选激光增材制造非晶合金的最佳工艺组合(激光功率和扫描速度)。结果 超声波检测可以准确有效地检测出非晶合金试件的晶化比例,并且当激光功率为1 300 W、扫描速度为600 mm/min时超声波衰减系数降至最低。进一步对该工艺下获得的样品分析发现,该工艺成型的Zr51Ti5Cu25Ni10Al9非晶合金缺陷最少、晶化程度最低、性能最佳。结论 超声波技术是快速筛选激光增材制造非晶合金等高性能金属最佳工艺参数的有效技术手段。  相似文献   

20.
摘要利用“三维成分逐点优化法”在Zr-Ti-Co-Al四元合金中发现了具高玻璃形成能力的Zr55Ti2C02sAl15合金,形成块体金属玻璃(BMG)棒材的临界直径可达到8mm。相对于无Ti的Zr56C028Al16三元BMG,Zr55Ti2C028Al15四元BMG的玻璃转变温度疋降低约9K,但其杨氏模量E、剪切模量...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号