首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用AgCuInTi钎料在较低温度对Al2O3陶瓷与可伐合金(Kovar)进行焊接。研究了钎焊温度对于Al2O3/AgCuInTi/Kovar封接件抗拉强度及漏气速率的影响,采用扫描电子显微镜(SEM)、能谱分析(EDS)以及X射线衍射分析(XRD)对陶瓷与钎料反应界面进行分析,研究界面反应机制。结果表明:随着焊接温度的升高,抗拉强度先升高后降低,最高达780℃时的93 MPa,漏气速率有先变小后变大的趋势,最小漏气速率为810℃时的1.1×10-10Pa·m3·s-1;焊接界面清晰可辨,陶瓷与钎料层形成了明显的反应界面,元素Ti和Cu在界面处达到峰值;元素In促使钎料在较低温度熔化,同时与Ag作用形成了钎料层的基体相,在陶瓷与钎料反应界面附近与Cu作用生成Cu4In;活性元素Ti是实现Al2O3与AgCuInTi连接的关键,界面主要产物为TiO2,TiO,Cu3TiO4,Al3Ti,同时伴有单质Ag的生成。  相似文献   

2.
采用CaO-SiO2-Na2O-CaF2-Al2O3-MgO渣系,通过测定熔渣的粘度和Al2O3吸收速率,研究连铸保护渣的Al2O3吸收速率与粘度及化学成分之间的关系。在一定条件下,当CaO/SiO2为1.2左右时,粘度达到最小值,Al2O3吸收速率达到最大值,分别为0.10?Pa*s、8.403×10-4?kg*m-2*s-1。随着渣中Na2CO3含量、CaF2含量和MgO含量的增加,粘度减小,Al2O3吸收速率增大。随着渣中Al2O3含量的增加,粘度增大,Al2O3吸收速率减小。粘度为Al2O3吸收速率的主要控制因素。随着熔渣粘度的增加,连铸保护渣的Al2O3吸收速率逐渐减小。  相似文献   

3.
采用CaO -SiO2 -Na2 O -CaF2 -Al2 O3-MgO渣系 ,通过测定熔渣的粘度和Al2 O3吸收速率 ,研究连铸保护渣的Al2 O3吸收速率与粘度及化学成分之间的关系。在一定条件下 ,当CaO SiO2 为1 .2左右时 ,粘度达到最小值 ,Al2 O3吸收速率达到最大值 ,分别为 0 .1 0Pa·s、8.4 0 3× 1 0 - 4 kg·m- 2 ·s- 1 。随着渣中Na2 CO3含量、CaF2 含量和MgO含量的增加 ,粘度减小 ,Al2 O3吸收速率增大。随着渣中Al2 O3含量的增加 ,粘度增大 ,Al2 O3吸收速率减小。粘度为Al2 O3吸收速率的主要控制因素。随着熔渣粘度的增加 ,连铸保护渣的Al2 O3吸收速率逐渐减小。  相似文献   

4.
采用正交实验方法,应用放电等离子烧结(SPS)技术制备出Y2O3含量分别为0.2%、0.6%、0.8%的Ti-6Al-4V合金,探究烧结温度、烧结压力、Y2O3含量和保压时间对Ti-6Al-4V合金显微组织、烧结密度和力学性能的影响,优化烧结工艺。结果表明,烧结温度对烧结密度的影响最大,接下来依次为烧结压力、Y2O3含量、保压时间;烧结温度对力学性能的影响最大,接下来依次为Y2O3含量、烧结压力、保压时间。当烧结温度1200℃、烧结压力50 MPa、保压时间5 min、Y2O3含量0.6%,烧结样的密度和压缩强度高,分别达到4.4138 g/cm3、1881.4 MPa,相比未添加Y2O3的Ti-6Al-4V合金,其压缩强度提高15.7%。  相似文献   

5.
分别以Y(NO3)3和氨水、NH4Al(SO4)2·12H2O和碳酸氢铵为原料,采用化学沉淀法与碳酸铝铵分解法合成了高活性、平均粒径分别为39 nm和95 am的Y23和AlO3超细粉体.以Y2O3,Al2O3超细粉和商用Nd2O3粉体为原料,采用固相反应法,经1 700℃真窄烧结15 h,制备了Nd:YAG透明陶瓷.含x(Nd)=1%的YAG陶瓷在可见光区最大透光率约为53%.对YAG陶瓷的烧结过程和显微组织研究表明,Nd的引入明显地促进了陶瓷的烧结,同时晶粒得到细化.  相似文献   

6.
以粒度≤74μm的Al2O3为增强相,粒度≤30μm的铝粉为基体,采用粉末冶金法制备了Al2O3颗粒增强铝基复合材料。采用金相显微镜、SEM等分析手段对制备的复合材料进行组织观察,并对其进行耐磨性测试。结果表明,Al2O3含量为10%,烧结温度为660℃,混粉时间为90 min时,相对磨损率最小为0.1684%。随着Al2O3的含量的增加和烧结温度的升高,试样的耐磨性呈现出先升高后降低的趋势,混粉时间对试样的耐磨性影响不明显。  相似文献   

7.
利用低温燃烧合成法制备了Al2O3掺杂浓度为0.5%~10%(摩尔分数,以下同)的Al2O3/Ce0.8Y0.2O1.9固体电解质复合材料。研究了Al2O3掺杂浓度对Ce0.8Y0.2O1.9固体电解质烧结及电性能的影响。试验结果表明,添加少量的Al2O3可以改善Ce0.8Y0.2O1.9固体电解质的烧结性能,当Al2O3的添加量为0.5%时,电解质粉体具有最佳的烧结性能,1350℃时的相对密度达到99%以上。当Al2O3的掺杂浓度超过其在Ce0.8Y0.2O1.9中的溶解极限时,随Al2O3掺杂量的继续增加,烧结体的相对密度开始下降。阻抗谱结果表明,在溶解极限范围内,Al2O3使Ce0.8Y0.2O1.9的电导率减小,电导活化能增加。Al2O3的掺杂浓度超过溶解极限时,Ce0.8Y0.2O1.9的晶粒电阻不变,由于Al2O3对晶界的"清洁"作用,晶界电阻减小;当Al2O3的掺杂浓度超过5%时,由于Al2O3颗粒对晶界的"阻塞"作用,晶界电阻增加。  相似文献   

8.
采用高能球磨、真空烧结工艺制备YG10超细硬质合金。研究了Y2O3含量对YG10硬质合金组织结构、磁学性能和机械性能的影响。研究发现:Y2O3的加入可提高合金致密度、硬度和抗弯强度,随着含量的增加,合金的矫顽磁力增加,磁饱和强度略有降低。加入质量分数为0.4%,球磨时间为120 h的Y2O3,YG10超细硬质合金的综合性能最佳,平均粒度为0.3μm,硬度达到92.4 HRA,抗弯强度达到1950 MPa。  相似文献   

9.
采用无压烧结法制备含CeO2的Mo/Al2O3材料,用MM-200型环-块式摩擦磨损试验机测试该材料在滑动干摩擦条件下的磨损行为,通过X射线衍射(XRD)和电子探针对其微观结构和磨损后的形貌进行研究和分析。结果表明,添加CeO2的烧结样品中出现CeAl11O18相,且随CeO2含量(体积分数)增加,CeAl11O18逐渐增多,Al2O3相应减少。当CeO2的体积分数为6%时Al2O3全部由CeAl11O18取代;CeO2的添加使Al2O3和CeAl11O18相边界处均呈现圆钝形貌,并且存在Mo、Al、O的相互扩散区域。磨损形貌表明,1 730℃烧结的样品中出现摩擦转移层,当CeO2含量达到4%时,该摩擦转移层大量出现,从而改善材料的耐磨性。  相似文献   

10.
采用喷射沉积和内氧化法制备出Al2O3La2O3Y2O3/Cu复合材料,研究该材料在直流20 V/20 A的工作条件下触点的电弧侵蚀特性,并与Al2O3/Cu材料进行了对比分析.利用电子天平、扫描电镜等方法分析电弧侵蚀后触点的质量变化和表面微观结构.结果表明,通过添加Y2O3、La2O3稀土氧化物颗粒,可有效降低触头材料的材料转移量.Al2O3La2O3Y2O3/Cu材料的抗熔焊性和抗烧损性优于Al2O3/Cu材料的性能.在直流阻性负载条件下Al2O3La2O3Y2O3/Cu阳极触头表面形成凹坑,阴极触头表面形成凸起,触点表面显示出浆糊状凝固物和喷发坑等电弧侵蚀形貌特征.  相似文献   

11.
以α-Al2O3、TiO2和轻烧MgO为原料,在轻烧MgO含量固定不变的情况下.研究了在1400~1600℃下α-Al2O3和TiO2的加入量对MgO-Al2O3-TiO2材料烧结性能的影响。结果表明:当烧结温度低于1500℃时,随着TiO2含量的增加,Al2O3含量的减少,试样的显气孔率降低,体积密度增加;当烧结温度升高到1600℃时,TiO2的加入使试样的烧结性能稍微变差;且在1600℃保温3h烧后的试样中,随着TiO2含量的增加,Al2O3含量的减少,试样的晶粒尺寸增大,但当Al2O3含量为0时,试样的晶粒尺寸又有所减小。  相似文献   

12.
研究了混合料 Al2 O3/Si O2 对低温烧结时烧结矿成矿规律的影响 ,揭示了低温烧结时铁酸盐的矿物含量、化学成分、结晶状态、成矿特性等的内在变化规律 ,指出调整混合料 Al2 O3/Si O2 是钒钛磁铁精矿实现低温烧结的前提条件  相似文献   

13.
采用固相反应法制备(1-x)Sr Ti O3-x Al2O3(摩尔分数x=0.30~0.50)系列微波介质陶瓷材料。通过设计实验改变Al2O3的添加量和烧结温度来研究体系的相组成、显微结构及介电性能之间的变化规律。结果表明:随着Al2O3添加量的增多,陶瓷体系的介电常数呈减小趋势;在1390~1450℃下,保温4h烧结时制备的(1-x)Sr Ti O3-x Al2O3陶瓷的致密度随烧结温度的变化不大,均在94%以上。当烧结温度为1450℃,x=0.5时,所制备的陶瓷体系具有较好的介电性能:介电常数约为77.57,介电损耗小于4.4×10-4,致密度约为98%。  相似文献   

14.
为阐述烧结过程熔融机制和成矿机制,明确MgO、Al2O3质量分数对烧结液相生成和矿物组成的影响是至关重要的。利用Factsage软件计算Fe2O3 SiO2 CaO Al2O3 MgO体系的液相生成,计算氧分压在500Pa时,不同温度,不同MgO、Al2O3质量分数下体系液相生成和液相区分布的影响。通过烧结试验,分析烧结矿的矿相和矿物成分,结合软件计算得出烧结矿中MgO质量分数为2.0%、Al2O3质量分数为3.0%时其液相量、矿相、矿物成分达到最优适合烧结冶炼的标准。  相似文献   

15.
以自制的亚微米Fe3Al为增强相、Al2O3为基体相,通过常压烧结制备出Fe3Al/Al2O3复合材料,研究了Fe3Al含量、烧结温度及保温时间对复合材料力学性能的影响.结果表明:增加Fe3Al含量、提高烧结温度及延长保温时间都可以不同程度的提高复合材料力学性能.最佳工艺参数为:Fe3Al含量(质量分数)为15%,成形压力为2488MPa,烧结温度为1380℃.此条件下制备的复合材料的各项力学性能较好:相对密度为93%,维氏硬度为9.3GPa,断裂韧度为7.51MPa·m1/2.烧结温度对提高复合材料力学性能的影响较大.  相似文献   

16.
研究了复合添加剂MnO2、MgO和Y2O3对Al2O3陶瓷烧结性和抗热震性的影响.试验结果表明:在复合添加剂中引入MgO和Y2O3大幅度提高了Al2O3陶瓷的致密度,促进了陶瓷的烧结,提高了材料的强度.Al2O3陶瓷的抗热震性能也得到提高,当MgO和Y2O3的含量为0.5%时,Al2O3陶瓷的临界热震温差在300℃左右,抗热震性能大大提高;继续增加MgO和Y2O3的含量,其抗热震性有所降低.添加复合添加剂的Al2O3陶瓷的抗热震性受到细晶强化和气孔的共同控制,对抗热震性提高的主要贡献为细晶强化,但气孔也会影响其抗热震性.  相似文献   

17.
使用钙处理法把Al2O3系夹杂改质为钙铝酸盐的程度,主要取决于钙与硫还是与Al2O3系夹杂进行反应。通过热力学计算,推导了钙处理Al2O3系夹杂,改质为不同xCaO·yAl2O3的临界硫含量a[S]e=K5·a1/3Al2O3/(a(CaO)·a2/3[Al])和临界钙含量值a[Ca]e=a(CaO)·a2/3[Al]·(K4·a2/3Al2O3)-1。推荐了在工业生产中,既能在精炼温度下使Al2O3系夹杂呈液态,有利于夹杂物上浮;又能在连铸时,防止中间包水口蓄流的钢中钙的推荐值([Ca]T),根据钢液不同的[Al]含量(0.01%~0.05%),[Ca]T应控制在13×10-6~41×10-6。  相似文献   

18.
采用拉伸试验机测定烧结试样的强度,应用半球点法测定试样的熔化性温度,研究了SiO2、Al2O3和MgO含量对阳春铁矿粉熔化性及其烧结质量的影响。结果表明:随着SiO2含量的增加,熔化性温度相应降低,当SiO2的质量分数为5.6%时抗压强度较大;随Al2O3含量增加熔化性温度略有升高,烧结矿强度略有降低;MgO含量增加,阳春粉的熔化性温度相应升高,烧结试样的抗压强度相应升高。  相似文献   

19.
(ZrO2)0.96(Y2O3)0.03(Al2O3)0.01陶瓷的制备及性能研究   总被引:1,自引:0,他引:1  
采用化学共沉淀法制备(ZrO2)0.96(Y2O3)0.03(Al2O3)0.01的粉末, 在不同的升温速率、不同的烧结时间和不同的烧结温度等烧结工艺下制备出(ZrO2)0.96(Y2O3)0.03(Al2O3)0.01三相体系复合陶瓷. 经研究发现, 在升温速率和降温速率均为5 ℃·min^-1 的烧结制度下, 1550 ℃烧结时, 可以得到抗弯强度达998 MPa, 抗热震次数达33次, 相对密度达96%和电性能较好的烧结体.  相似文献   

20.
以(ZrOCl2·8H2O、Y(NO3)3·6H2O和Sc2O3为原料,聚乙二醇(PEG)为分散剂,采用化学共沉淀法制备YSZ(yttrium stabilized zirconia)(名义成分为4.5%Y2O3-ZrO2)与Sc-YSZ(名义成分为0.6%Sc2O3-YSZ)2种纳米复合陶瓷粉末(Y2O3和Sc2O3的含量均为摩尔分数),经过压制成形后在不同温度下烧结。通过透射电镜、X射线衍射等对粉末进行表征,研究其高温下相的稳定性。结果表明:前躯体粉末在600℃煅烧2 h后都呈单一的非平衡四方相结构。采用正向滴定法制备的0.6%Sc2O3-YSZ粉末粒径约为30 nm,粉末团聚严重,有许多大的团聚体,反向滴定法制备的0.6%Sc2O3-YSZ粉末粒径约20 nm,粉末团聚少。YSZ在1 200℃烧结100 h后,呈平衡四方相,并有立方相产生在1 300℃烧结100 h后,平衡四方相不稳定,产生立方相和少量单斜相;在1 400℃烧结100 h后,四方相全部转变为单斜相和立方相。而Sc-YSZ粉体在1 200、1 300和1 400℃下烧结100 h后都始终保持单一的非平衡四方相结构。因此在YSZ中添加少量Sc2O3可提高其相的稳定性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号