首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用硅烷偶联剂对介孔分子筛疏水改性,并将其掺杂在聚二甲基硅氧烷(PDMS)中涂覆在聚砜基膜上制备有机无机杂化复合膜.对疏水改性介孔分子筛进行了BET测试及FT-IR等表征.BET测试结果显示,改性前后孔径分布发生明显变化;从FT-IR图中看出,改性后介孔分子筛的羟基峰明显减小甚至消失并且出现烷基等特征峰.通过扫描电镜(SEM)观察了有机无机杂化复合膜的形貌结构,并研究了分子筛添加量、料液浓度和操作温度等对杂化复合膜渗透汽化性能的影响.结果表明:采用1,1,3,3-四甲基二硅氮烷对介孔分子筛疏水改性最有效;疏水改性后介孔分子筛/PDMS杂化复合膜对醇/水溶液有较好的分离效果,当分子筛填充质量分数为20%、操作温度为40℃、进料液质量分数为3%时,杂化膜对乙醇/水体系的分离因子最高为9.8,渗透通量为1 002 g/(m2·h),对正丁醇/水体系的分离因子最高为65.4,渗透通量为1402 g/(m2·h).  相似文献   

2.
以丙烯酸、丙烯腈为单体,添加纳米SiO2进行水溶液共聚,由共聚物水溶液制备主体膜,并与聚乙烯醇膜复合,制备出水优先透过的3层夹芯复合渗透饩化膜.通过TG分析、机械性能测试和渗透汽化分离实验研究了纳米SiO2改性膜的性能.与不含纳米SiO2的膜相比,改性膜的热稳定性和机械稳定性明显改善.使用该膜分离甲醇质量分数98%的水溶液,膜的分离因子显著提高,且有不错的渗透通量.  相似文献   

3.
以聚醚砜为膜基质材料,微米级粉末状吸附剂为功能性颗粒,以不同质量分数的DMAc溶液为凝固浴,采用相转化的方法,制备吸附剂/聚醚砜杂化膜.研究了凝固浴质量分数对杂化膜的形态结构、纯水通量以及牛血清蛋白截留率的影响.结果表明:随着凝固浴质量分数逐渐增加.杂化膜内部的海绵状结构越来越明显;其纯水通量首先呈下降趋势,但当凝固浴质量分数超过60%以后又开始上升;杂化膜对牛血清蛋白的截留率,与水通量正好相反,先呈上升的趋势,当凝固浴质量分数超过60%后又开始下降.  相似文献   

4.
用交联聚乙烯醇膜上下包覆添加纳米SiO2粉末的丙烯酸/丙烯腈共聚膜,制备出新型优先透水复合渗透汽化膜,通过扫描电镜、红外光谱分析等方法对复合渗透汽化膜进行了结构表征,并通过渗透汽化实验对甲醇质量分数为85%~98%的水溶液进行分离.结果表明:添加纳米SiO2粉末后膜的分离性有显著提高,当纳米SiO2质量分数达到0.15%时,在65℃对98%甲醇溶液进行分离,其分离因子可达1 534,通量可达583 g/(m2.h),与不添加SiO2纳米粉末的膜相比,分离因子可提高8倍.通过对不同浓度甲醇水溶液的分离实验确认,所制备的渗透汽化复合膜适用于高浓度甲醇溶液的分离.  相似文献   

5.
模拟传统发酵,将PTFE膜用于不凝气中乙醇/水蒸气的分离,研究了不凝气中乙醇浓度、进料温度、膜后真空度等操作条件对膜分离性能的影响,并对PTFE膜和ePTFE膜进行比较.结果表明,PTFE膜渗透通量随着气体中乙醇摩尔分数、进料温度、膜后真空度的增加而增加,温度与渗透通量符合Ar-rhenius方程.PTFE膜分离因子随气体中乙醇摩尔分数、进料温度的增加而增加,随膜后真空度的增加而减小.ePTFE膜相对于PTFE膜来说,具有较高的渗透通量,分离效果较好,有利于乙醇/水蒸气的分离.  相似文献   

6.
改性壳聚糖膜(Ⅰ—1)用于醇水混合物分离的研究   总被引:1,自引:0,他引:1  
本文开发了一种用于醇水分离的改性壳聚糖膜(I—1),它具有很高的分离因子和大的渗透通量,可望在工业上得到应用。  相似文献   

7.
为了改进聚醚嵌段酰胺(PEBA)/聚砜(PSF)膜的透水性,采用共混聚甲基丙烯酸-N,N-二甲氨基乙酯(PDMAEMA)的方法,通过季胺化交联反应在膜内固定水溶性的PDMAEMA,使其在使用中不至于溶出,制备出PDMAEMA-PEBA/PSF复合膜,并用于乙二醇脱水,考察了不同共混含量对膜渗透汽化脱水性能的影响,通过析因设计探究了交联条件(交联剂种类、交联剂浓度、交联时间)对膜渗透选择性能的影响,遴选出能够使共混膜具有良好渗透选择性能的交联条件,并对改性后膜的表面性质进行了研究.结果表明:当聚合物质量浓度为10 g/L、PDMAEMA质量分数为15%~25%时,共混膜与PEBA/PSF膜相比,水通量提高了约80%,水/乙二醇分离因子提高了约40%;共混改性后膜表面亲水性增加,平均粗糙度增加了约120%,纯水接触角下降了约7°.  相似文献   

8.
以聚砜超滤膜为基膜,采用溶剂蒸发法制备聚苯醚/聚砜复合膜.用红外光谱(FT-IR)表征复合膜的制备效果,通过扫描电镜(SEM)观察其断面形貌;研究了聚苯醚(PPO)含量、进料液乙醇含量及进料液温度对复合膜渗透汽化分离性能的影响.结果表明,随铸膜液中PPO质量分数的增大,复合膜的分离因子增大,渗透通量减小;随进料液中乙醇质量分数的增大,复合膜的分离因子减小,而渗透通量增大;随进料液温度的升高,复合膜的分离因子及渗透通量均增大.对铸膜液中PPO质量分数为14%的复合膜,在进料液乙醇含量10%、进料液温度60℃时,膜的渗透通量157.2 g/(m2.h),膜对乙醇的选择系数为15.6.  相似文献   

9.
壳聚糖/SiO_2杂化膜制备及其对铜离子吸附性能的研究   总被引:2,自引:0,他引:2  
用硅偶联剂氨丙基三乙氧基硅烷(KH550)作为前躯体和交联剂,与壳聚糖通过溶胶-凝胶反应制备了壳聚糖/SiO2纳米杂化膜.用红外光谱对杂化膜进行表征,并研究杂化膜的溶胀性能、耐酸性能及不同的因素对杂化膜吸附重金属铜离子性能的影响.结果表明:红外光谱图显示杂化膜内有新键产生,引入了Si-O-Si结构.壳聚糖/SiO2纳米杂化膜溶胀性能降低,耐酸性能提高,吸附铜离子性能提高.当壳聚糖/SiO2纳米杂化膜中SiO2的质量分数为6.8%时杂化膜吸附铜离子性能最好.室温下溶液pH值为5、铜离子浓度为0.05 mol/L、时间为60 min时,杂化膜CSH1对铜离子有较好的吸附效果.  相似文献   

10.
用共混法和原位杂化法分别合成了壳聚糖-SiO2杂化材料,研究了投料比对壳聚糖-SiO2杂化材料的结构以及耐水性、力学性能、Cu2+吸附性的影响.结果表明:与纯壳聚糖相比,共混法和原位杂化法合成的杂化膜材料的吸水倍率最高时分别比纯壳聚糖提高了108.3%和11.1%;共混法合成的杂化膜材料拉伸断裂强度随mTEOS/m壳聚糖的增加先增大后减小,而原位杂化法的则是随mTEOS/m壳聚糖的增加一直增大,分别比纯壳聚糖膜提高了19.9%和20.3%.同时,随着mTEOS/m壳聚糖的增大,两种方法制备的杂化材料的断裂伸长率均下降;而随着mTEOS/m壳聚糖值的增大,共混法合成的杂化膜对Cu2+的吸附能力则是先增强后逐渐降低,而原位杂化法的则一直降低.TGA分析表明:SiO2的引入并未改变壳聚糖的降解机理.SEM分析表明:复合材料是以纳米尺度的SiO2增强的杂化膜材料.  相似文献   

11.
以正硅酸乙酯为无机组分,季铵化壳聚糖为有机组分,通过溶胶-凝胶法制备一系列不同正硅酸乙 酯质量分数的季铵化壳聚糖/正硅酸乙酯(q-CS/TEOS)复合阴离子交换膜。利用红外光谱分析(FT-IR)对膜的 化学结构进行表征。另外,利用得到的杂化膜对水溶液中的Cr(Ⅵ)离子进行吸附性能考察。实验对吸附时间、体系 pH 值、溶液温度等因素对吸附性能的影响进行考察。结果表明,正硅酸乙酯质量分数为38%的杂化膜在吸附时间 180min、pH 值5.0~8.0、溶液温度35℃的条件下对Cr(Ⅵ)离子吸附性能较好。  相似文献   

12.
以均苯四甲酸二酐(PMDA)和4,4′-二氨基二苯醚(ODA)为主要单体,亲水气相纳米二氧化硅(SiO_2)为改性试剂,通过溶液聚合和亚胺化分别制备出聚四氟乙烯(PTFE)/聚酰亚胺(PI)和SiO_2/PI/PTFE两种复合膜。利用傅立叶红外光谱仪(FTIR)、热场发射电子显微镜(SEM)、热重分析法(TGA)、接触角测试和渗透汽化测试研究改性前后膜结构及渗透汽化性能的变化。结果表明:PI/PTFE复合膜的渗透通量和分离因子在料液温度为30~60℃时,随温度的升高而分别提高,在渗透侧压为20~1000Pa时,随渗透侧压的升高而分别降低;当亲水气相纳米二氧化硅的浓度达到3%质量分数时,制备的SiO_2/PI/PTFE复合膜对95%质量分数的乙醇/水混合液的分离效果在通量及分离因子方面达到0.352kg/(m~2·h)、62.90。  相似文献   

13.
壳聚糖改性膨润土对酸性红吸附性能的研究   总被引:1,自引:0,他引:1  
探索壳聚糖与膨润土的质量比与反应介质酸度对制备壳聚糖改性膨润土的影响并以改性土为吸附剂探讨了改性土质量、吸附温度、吸附时间、介质的pH值及酸性红溶液质量浓度对酸性红吸附性能的影响.结果表明:制备的改性土随着壳聚糖质量的增加吸附量先增大后减小、随着反应介质的酸度增强,改性土的吸附能力增加;随着改性土质量的增加吸附量先增大后减小;随着反应温度上升改性土吸附能力先增大后减小;随着酸性红染料质量浓度的增加吸附能力增加;随着反应pH值的增大吸附能力先增大后减少.质量比为1:125,冰醋酸体积分数为1%为最佳制备条件,改性土质量为0.6g,温度温度为25℃,吸附时间为70min,介质pH为7左右时是最佳吸附条件.且其吸附行为满足Langmuir等温式.  相似文献   

14.
对共价反应型多层有机-无机复合膜组装及其渗透汽化性能进行了研究.采用经硅烷偶联剂改性后的管式陶瓷膜作为基膜,通过动态层层吸附自组装(layer-by-layer,LbL)技术在管式陶瓷膜内表面分别组装聚丙烯酸(poly acrylic acid,PAA)/聚乙烯醇(poly vinyl alcohol,PVA)/戊二醛(glutaraldehyde,GA),再通过热交联引发层间反应,生成共价键,形成稳定性较强的多层复合分离膜,并将其用于渗透汽化领域.考察了组装层数、复合时间、交联温度和PVA相对分子质量等条件对复合膜性能的影响.结果表明:当组装层数为5层、进料液温度为75℃时,有机-无机复合膜对95%的乙醇/水体系,其透过液水的质量分数为99.5%,渗透通量可达102 g/(m2·h).  相似文献   

15.
为了得到亲水性和抗污染性能好的聚丙烯微孔膜,采用表面涂覆法将聚乙烯醇固定在聚丙烯膜的表面.通过红外光谱对聚丙烯微孔膜改性前后的基团进行了表征;研究了反应时间、聚乙烯醇浓度等反应条件对聚乙烯醇固定率的影响.结果表明,聚乙烯醇的固定率随着反应时间和聚乙烯醇浓度的增加而增加.最佳反应条件为50 ℃下反应2 h,聚乙烯醇质量分数为1%,戊二醛质量分数为2%,得到的改性膜的水接触角从110°下降至62°,两个月内水通量的变化不明显,膜的亲水性和抗污染性较好.  相似文献   

16.
为提升聚砜膜的亲水性与抗油污染性能,采用共混亲水性无机纳米粒子——氧化铝的方式对其进行改性。通过非溶剂诱导致相转化法制得Al2O3/PSF复合膜,系统研究氧化铝与聚砜的质量比对铸膜液黏度、膜结构、孔隙率、力学性能、膜渗透性能和油水分离性能的影响。结果表明:当氧化铝与聚砜的质量比为7:1时,膜的孔隙率为78.04%,水接触角为37°,纯水通量达到最高的1 500 L/(m2·h·bar)(1 bar=100 kPa),油水乳液的渗透通量为320 L/(m2·h·bar),并且除油率高于99%。与改性前相比,该膜展现了优异的油水分离性能。  相似文献   

17.
利用电化学工作站的电化学交流阻抗谱构建一种测量分离膜通孔结构的电化学表征技术. 通过改变聚乙烯吡咯烷酮的质量分数,制备具有不同孔洞结构的聚砜分离膜. 采用电化学工作站、孔容积分析仪、膜性能测试装置对分离膜的孔结构和水通量进行分析. 结果表明:随着聚乙烯吡咯烷酮质量分数的增加,分离膜的通孔电阻下降,孔径增大,水通量增加. 在孔径为10 nm~40 nm的范围内,分离膜的水通量结果与其通孔电阻之间成反比关系,该关系符合分离膜的孔洞模型. 因此,电化学交流阻抗谱是一种评价分离膜的通孔结构的有效方法.  相似文献   

18.
硅橡胶膜在乙醇发酵-渗透蒸发耦合过程中的分离性能   总被引:6,自引:1,他引:6  
为掌握乙醇发酵 -渗透蒸发耦合过程中的膜分离行为 ,在发酵液温度 30~ 4 0℃、糖浓度 0~ 10 0g/L以及有无细胞存在的实验条件下 ,测试了乙醇通过硅橡胶膜的传质分离速率。结果表明 ,发酵温度升高促进渗透蒸发 ,但乙醇产率同时降低 ,导致过膜总通量增加而乙醇通量无明显变化 ,说明耦合过程操作温度应以实现高浓度连续发酵为控制因素 ;糖浓度增加对水分子在膜面的吸附有抑制作用 ,导致水的渗透通量减少 ,从而相对提高了膜对乙醇的选择性 ,分离因子提高 ;发酵液中细胞的存在促进了膜面的传质 ,有利于乙醇的渗透蒸发 ,过膜通量增加。  相似文献   

19.
以乙烯基三乙氧基硅氧烷改性的纳米Si O_2为添加剂,通过溶液共混制得壳聚糖/改性纳米Si O_2杂化膜,并对废水中的直接桃红12B和直接耐晒蓝B2RL进行吸附。采用傅立叶红外光谱和热重分析方法对杂化膜的结构及热稳定性进行表征,讨论了温度、p H值、时间等因素对杂化膜吸附直接染料的影响。结果表明:与纯壳聚糖膜相比,杂化膜热稳定性提高;当染料浓度在60mg/L、吸附温度为55℃、p H为8条件下,杂化膜对直接桃红12B和直接耐晒蓝B_2RL有较高吸附量。同时,在此条件下,该杂化膜上,直接染料桃红12B和耐晒蓝B_2RL的吸附行为分别遵循Langmuir和Freundlich等温模型。  相似文献   

20.
为提高气体分离膜的渗透性能,将界面交联法应用于制备气体分离用超薄复合膜,采用侧链具有反应性的聚合物聚甲基丙烯酸二甲氨基乙酯(PDM)为涂层材料,通过PDM涂层与交联剂溶液之间的固-液界面反应制膜,并采用扫描电镜(SEM)和X射线光子能谱仪(XPS)对膜的形貌及表面化学结构进行表征。结果表明:界面反应形成的PDM交联层具有不对称结构,表面可以充分交联并提供分离性能,表面以下疏松的交联结构有利于气体渗透;当分离因子相同时,界面交联膜的渗透通量更高,在跨膜压差为300 kPa、操作温度为23℃时,界面交联膜的CO_2渗透速率为85 GPU,本体交联膜的CO_2渗透速率为30 GPU,CO_2/N_2理想分离因子为50。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号