首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
吴丽  陈晓  张秀云  于芳 《广州化工》2012,40(23):20-21,33
同步废水水处理及产电的微生物燃料电池是利用生物催化剂直接把化学能转化为电能,具有能量转化率高、污泥产率低、反应条件温和等优点。本文阐述了微生物燃料电池的工作原理及电子传递机理,综述了其最新的研究进展,并对微生物燃料电池在污水处理领域的发展方向作了展望。  相似文献   

2.
秦悦  林小秋  郑琳姗  李惠雨  刘远峰  彭利冲  李从举 《精细化工》2021,38(9):1737-1745,1756
微生物燃料电池(MFC)是一种利用微生物作为催化剂就能实现同步产电及降解有机污染物的绿色能源装置.电极作为MFC的重要组成部分,在提高污染物降解及产电能力方面发挥着至关重要的作用.介绍了MFC电极,主要包括碳基/合成材料修饰电极、导电聚合物/复合物修饰电极、金属/金属氧化物修饰电极及其他材料修饰电极及其最新研究进展,对...  相似文献   

3.
微生物燃料电池(Microbial fuel cells,简称 MFCs)是一种生物电化学混合系统,利用微生物的氧化代谢作用将有机物或者无机物中的能量转化为电能,具有节能、减少污泥生成及能量转换的突出优势,目前得到研究者们的广泛关注。其中产电微生物是MFCs系统的核心组成部分,筛选及培养高效产电微生物对促进MFCs的产电性能具有重要作用。通过对产电微生物电子传递机制、产电微生物种类以及影响微生物产电的因素进行分析总结,综述了阳极产电微生物的最新研究进展,最后从微生物角度展望了未来的研究方向,以期为产电微生物在MFCs中的应用提供指导和支持。  相似文献   

4.
构建了三室双阴极MFC系统,对系统同步硝化反硝化脱氮产电性能进行了研究,考察了进水COD、NO-3-N和NH+4-N浓度对系统脱氮产电性能的影响。结果表明,该MFC系统对COD和NH+4-N具有良好的去除效果,去除率分别高达98%和95%以上,反硝化和产电能力受进水COD、NO-3-N和NH+4-N初始浓度的影响较大,NO-3-N最大去除率73.6%,厌氧阳极、缺氧阴极和好氧阴极的最大功率密度分别达到1.88,0.74 W/m3和0.59 W/m3,阳极和缺氧阴极的最大库伦效率分别只有27.6%和63%,说明有其他非电化学反应过程的存在。实验结果也表明好氧阴极和缺氧阴极之间存在着对电子的竞争作用,NH+4和电极之间存在着对O2的竞争。  相似文献   

5.
以沼液为原料的微生物燃料电池产电降解特性   总被引:1,自引:0,他引:1  
为提高生物质能源利用效率,降低废水处理成本,实验构建单室无膜空气阴极微生物燃料电池(microbial fuel cell,MFC),碳布作为阴阳极材料,将牛粪沼液作为接种液及底物进行产电性能测试,同时考察了MFC对该沼液的降解效果。结果表明,MFC能够利用沼液进行产电,最高输出电压330 mV,内阻10 kΩ,最大功率密度为10.98 mW·m-2,沼液中的不可溶性物质是导致MFC输出电压、功率密度低的重要原因。MFC的运行对沼液中的有机物、氮、磷等物质具有一定的降解能力,24 h内去除率分别达到20.73%、67.82%、72.56%。因此,MFC作为产生电能的新方法,在联合处理沼液等有机废水节能减排方面具有广阔前景。  相似文献   

6.
以沼液为原料的微生物燃料电池产电降解特性   总被引:3,自引:2,他引:1       下载免费PDF全文
为提高生物质能源利用效率,降低废水处理成本,实验构建单室无膜空气阴极微生物燃料电池(microbial fuel cell,MFC),碳布作为阴阳极材料,将牛粪沼液作为接种液及底物进行产电性能测试,同时考察了MFC对该沼液的降解效果。结果表明,MFC能够利用沼液进行产电,最高输出电压330 mV,内阻10 kW,最大功率密度为10.98 mW·m-2,沼液中的不可溶性物质是导致MFC输出电压、功率密度低的重要原因。MFC的运行对沼液中的有机物、氮、磷等物质具有一定的降解能力,24 h内去除率分别达到20.73%、67.82%、72.56%。因此,MFC作为产生电能的新方法,在联合处理沼液等有机废水节能减排方面具有广阔前景。  相似文献   

7.
以厌氧污泥为原始菌群来源构建混茼微生物燃料电池.840h后.最大功率密度达到1900mW·m^-1。从该电池阳极分离纯化出一株产电菌,细胞形态为球形.生长特性为兼性厌氧,经鉴定属于葡萄球菌属(Staphylococcus),命名为StaphylococcusNJUST—1。以StaphylococcusN-IUS-1。为微生物构建单菌微生物燃料电池.稳定后最大功率密度达到520mw·m^-2,比混菌电池要低许多,同时极化曲线显示.电流密度达到0.18mA·cm^-2后,电压开始快速下降.表明在较大电流下NJUST—1产电受到阻碍。NJUST-1代谢1.0g·L^-1葡萄糖5~10h内。外路电压维持在较高水平;葡萄糖浓度降低到0.1g·L^-1时.电压明显下降;葡萄糖浓度接近0后.仍能检测到电压。  相似文献   

8.
李蕾  关毅  杨明 《山东化工》2013,(3):11-13
将微藻与微生物燃料电池(简称MFC)相结合,可以将太阳能转化成电能,这是一种可再生、稳定、高效的产能方式。本论文主要研究了螺旋藻作为MFC阳极产电微生物,以碳酸氢盐或葡萄糖作为底物的产电性能,并通过改变光照强度等条件,探讨影响微藻MFC产电性能的主要因素。以0.1mol/L的铁氰化钾溶液作为阴极液,外电阻为1000Ω,光照强度为12000lx,温度为28℃或30℃,进行电池的运行。螺旋藻MFC可以得到200mV的稳定输出电压,最大功率密度为41.33mW/m2,内阻为2000Ω。研究发现,螺旋藻MFC产生的电压主要依赖于生物膜上的藻,而与悬浮在阳极液中的藻无关。光照强度是影响产电的最主要因素之一,藻的输出电压随着光暗周期的变化表现出明显的周期性。  相似文献   

9.
微生物燃料电池(MFCs)是一种生物电化学混合系统,利用微生物的氧化代谢作用将有机物或者无机物中的能量转化为电能,具有节能、减少污泥生成及能量转换的突出优势,已引起广泛关注。其中,产电微生物是MFCs系统的核心组成部分,筛选及培养高效产电微生物对促进MFCs的产电性能具有重要作用。对产电微生物电子传递机制、产电微生物种类以及影响微生物产电的因素进行分析总结;综述了阳极产电微生物的最新研究进展;最后,从微生物角度展望了阳极产电微生物未来的研究方向,以期为产电微生物在MFCs中的应用提供指导和支持。  相似文献   

10.
11.
《天津化工》2014,(3):12-12
<正>全国大学生"生态创想·绿色行动"大奖赛决赛在中新天津生态城举行。南开大学的"零碳排自运行废水处理系统研究"荣获一等奖。南开大学"零碳排"团队成员介绍,污水处理系统都是依靠外部能源去除污染物,实际上,污水中的有机物贮存着大量可利用的能源。"我们将一种被称作异化金属还原菌的微生物应用在污水处理池中,它们既能够高效地  相似文献   

12.
微生物燃料电池最新研究进展   总被引:1,自引:1,他引:1  
介绍了微生物燃料电池(MFC)的原理、组成和特点,并针对MFC功率密度过低、构造成本高等问题,从筛选优势产电微生物、改善MFC的构造、优化电极材料以及提高电子传递效率等方面进行了介绍,同时还提到了提高产电性能的各种途径,最后对MFC的发展前景进行了展望.  相似文献   

13.
14.
构建了双室型微生物燃料电池(MFC),探讨了异养反硝化底物降解、产电特性和指示作用。结果表明:有机物是影响异养反硝化微生物燃料电池产电和污水处理性能的关键影响因素,未加入有机物时MFC产电仅有10 m V;MFC的电信号能较好地反映亚硝氮、COD基质浓度的变化情况,因此可用电压变化指示底物的降解过程;在不考虑菌体水解、同化作用所引起氨氮浓度的增加问题时,亦可用时间来指示氨氮的降解过程。  相似文献   

15.
偶氮含盐废水生化处理流程复杂、电耗高,且降解机理尚不明确。本研究基于酸性重铬酸钾法水热处理获取改性阳极,进而构建微生物燃料电池(microbial fuel cell,MFC)对偶氮含盐废水进行处理。考察了不同二价阴离子对MFC产电性能和降解有机物效果的影响,并探究了MFC对直接红13的降解机理。结果表明,偶氮含盐废水中含有硫酸钠时的产电性能高于含有碳酸钠的情况,MFC最大功率密度为265.38mW/m2、最大电流密度为1.10A/m2;MFC处理偶氮含盐废水时,对直接红13的去除率低于无额外添加盐时的效果(71.13%),对葡萄糖共基质的降解影响程度为:添加硫酸钠>添加碳酸钠>无额外添加盐。微生物群落和降解产物分析表明,MFC阳极生物膜通过变形菌门、拟杆菌门等微生物的协同作用实现了对直接红13的生物电化学降解,产电下降解产物以还原产物芳香胺为主。  相似文献   

16.
微生物燃料电池处理含铬废水并同步产电   总被引:2,自引:1,他引:2  
以葡萄糖为阳极燃料、含铬废水为阴极液,碳毡为阳极、石墨板为阴极构建了双室微生物燃料电池,考察了阳极条件(底物浓度)及阴极条件(pH、初始六价铬浓度)对含铬废水的降解及MFC的产电性能的影响.结果表明低阴极液pH和高初始Cr(Ⅵ)浓度能改善MFC产电性能.当pH=2、初始六价铬浓度为177 mg/L、反应时间为10 h时,最大输出功率为108 mW/m~2,六价铬去除率为92.8%.阳极底物浓度对微生物燃料电池的性能也有影响.在微生物燃料电池中,阴极极化较小,表明该燃料电池有稳定的性能,微生物燃料电池对含铬废水的处理有应用潜力并能同步产电.  相似文献   

17.
染料废水含有大量有机污染物,还具有色度高、COD高、盐分高等特点,是典型的难降解有机废水。微生物燃料电池可利用阳极微生物降解有机物的同时产生电子经外电路传递至阴极,实现降解和产电双同时的功能。组装数组双室型微生物燃料电池,以污水厂厌氧好氧混合污泥为接种源进行接种,以罗丹明B模拟染料废水为目标污染物,考察微生物燃料电池阳极降解染料废水的效果,优化了染料废水初始浓度、p H值、外接电阻等实验条件,通过对降解过程中间产物的测定推断罗丹明B废水在微生物燃料电池体系的降解路径和机理。  相似文献   

18.
利用微生物燃料电池同步降解沼液和三苯基氯化锡   总被引:2,自引:1,他引:1       下载免费PDF全文
微生物燃料电池(MFC)作为一种同步产电和除污的新型电化学装置,为有效处理难降解有机污染物提供了一种途径。基于阴极Fenton反应,提出了一种耦合典型双室MFC中阳极沼液产电及阴极降解有机锡的新方法。结果表明,阳极产电生物膜经驯化后MFC的最高电压提高了50.32%,而且电压稳定时间延长了1倍。MFC运行结束后,阳极沼液COD、总氮、总磷的去除率分别为85.35%±1.53%、59.20%±5.24%、44.98%±3.57%。阴极三苯基氯化锡(TPTC)的降解率随其初始浓度增加而降低。在添加100 μmol·L-1 TPTC时,MFC的最高输出电压为280.2 mV,最大功率密度为145.62 mW·m-2。TPTC在14 d后完全降解,降解效率为91.88%,降解速率约为0.273 μmol·L-1·h-1。研究结果可为利用MFC同步处理阳极有机废水和阴极有机污染物的实际应用提供基础支持。  相似文献   

19.
微生物燃料电池(Microbialfuel cell,MFC)是一种利用微生物的催化作用将有机物中的化学能转化为电能的新型技术,它作为种新型的清洁能源,符合循环经济、清洁生产和可持续发展的要求.文章综述了微生物燃料电池技术在废水处理领域的最新研究进展,并对WC技术的未来发展进行了展望.  相似文献   

20.
直接微生物燃料电池的影响因素   总被引:1,自引:0,他引:1  
以厌氧污泥作为初始接种体,构建了一个直接微生物燃料电池,并经过160h的驯化,获得最大电压为590mV(1000Ω),并考察了不同底物和催化剂对电池性能的影响。结果表明,葡萄糖的最大功率密度(669mW/m2)要高于丁二酸的最大功率密度(235mW/m2)。通过比较电极电位,发现阳极电位随外电阻的变化较大,这主要是混合菌对不同底物的利用能力存在差异,可通过选择合适的产电菌来提高丁二酸产电的性能;并以锰作为阴极催化剂,其最大输出功率密度为147mW/m2,与铂作为阴极催化剂有一定的差距,还需进一步优化催化剂配比和制备工艺。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号