首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The visual system is constantly inundated with information received by the eyes, only a fraction of which seems to reach visual awareness. This selection process is one of the functions ascribed to visual attention. Although many studies have investigated the role of attention in shaping neuronal representations in the visual cortex, few have focused on attentional modulation of neuronal signals related to visual motion. Here we report that the responses of direction-selective neurons in monkey visual cortex are greatly influenced by attention, and that this modulation occurs as early in the cortical hierarchy as the level of the middle temporal visual area (MT). Our finding demonstrates a stronger and earlier influence of attention on motion processing along the dorsal visual pathway than previously recognized.  相似文献   

2.
Sperry and his colleagues had shown that section of the corpus callosum blocks the normally strong interocular transfer of visual learning in chiasma sectioned monkeys. Although interhemispheric transfer of learning was blocked, monkeys could be readily trained to use any combination of eye and hand in a task that required rapid visually guided responses. Sperry suggested that there must be a subcortical pathway linking sensory to motor areas of the brain. We tested monkeys in a task which required them to orient their wrist and fingers correctly in order to remove a morsel of food from a slotted disc. Animals in which we made lesions of the dorsal extrastriate visual areas of the parietal lobe were profoundly impaired in performing this task, but showed no deficit in visual discrimination learning. A monkey with an extensive lesion of the ventral, temporal lobe extrastriate areas showed no deficit in the visuomotor task but was profoundly impaired in visual discrimination learning. Lesions of peri-arcuate cortex, a major cortical target of parietal lobe visual areas, produced only a mild deficit which was motor in character. We suggest that the visuomotor deficit caused by parietal lobe lesions is brought about by depriving the cerebellum of its cortical visual input.  相似文献   

3.
Anatomical and physiological studies of the primate visual system have suggested that the signals relayed by the magnocellular and parvocellular subdivisions of the LGN remain segregated in visual cortex. It has been suggested that this segregation may account for the known differences in visual function between the parietal and temporal cortical processing streams in extrastriate visual cortex. To test directly the hypothesis that the temporal stream of processing receives predominantly parvocellular signals, we recorded visual responses from the superficial layers of V1 (striate cortex), which give rise to the temporal stream, while selectively inactivating either the magnocellular or parvocellular subdivisions of the LGN. Inactivation of the parvocellular subdivision reduced neuronal responses in the superficial layers of V1, but the effects of magnocellular blocks were generally as pronounced or slightly stronger. Individual neurons were found to receive contributions from both pathways. We furthermore found no evidence that magnocellular contributions were restricted to either the cytochrome oxidase blobs or interblobs in V1. Instead, magnocellular signals made substantial contributions to responses throughout the superficial layers. Thus, the regions within V1 that constitute the early stages of the temporal processing stream do not appear to contain isolated parvocellular signals. These results argue against a direct mapping of the subcortical magnocellular and parvocellular pathways onto the parietal and temporal streams of processing in cortex.  相似文献   

4.
We propose a model for the neuronal implementation of selective visual attention based on temporal correlation among groups of neurons. Neurons in primary visual cortex respond to visual stimuli with a Poisson distributed spike train with an appropriate, stimulus-dependent mean firing rate. The spike trains of neurons whose receptive fields do not overlap with the "focus of attention" are distributed according to homogeneous (time-independent) Poisson process with no correlation between action potentials of different neurons. In contrast, spike trains of neurons with receptive fields within the focus of attention are distributed according to non-homogeneous (time-dependent) Poisson processes. Since the short-term average spike rates of all neurons with receptive fields in the focus of attention covary, correlations between these spike trains are introduced which are detected by inhibitory interneurons in V4. These cells, modeled as modified integrate-and-fire neurons, function as coincidence detectors and suppress the response of V4 cells associated with non-attended visual stimuli. The model reproduces quantitatively experimental data obtained in cortical area V4 of monkey by Moran and Desimone (1985).  相似文献   

5.
The ability of organisms to categorize diverse and often novel stimuli depends on ongoing interactions with their environment. In a modality such as vision, categorization requires the generation of both selective and invariant responses of cortical neurons to complex visual stimuli. How does behavior contribute to shaping the responses of these neurons? Analysis of this question is made difficult by the complex multilevel interactions between many neural and behavioral variables. To mitigate this difficulty, we studied the development and ongoing plasticity of pattern-selective neuronal responses by means of synthetic neural modeling. For this purpose, we constructed Darwin V, which consists of a simulated neuronal model embedded in a real-world device that is capable of motion and autonomous behavior. The neuronal model consists of four major components: a visual system (containing cortical and subcortical networks); a taste system based on conductance; sets of motor neurons capable of triggering behavior; and a diffuse ascending (value) system. The modeled visual cortex consists of two areas: a topographic map responsive to elementary features connected to a higher-order map composed of initially non-selective neuronal units. During behavior over time in its environment, Darwin V encounters numerous objects consisting of black metal cubes displaying different patterns of white blobs and stripes. Initially, the lack of specific higher-order visual responses does not allow visual pattern discrimination, and appetitive and aversive behaviors are triggered by the 'taste' (surface conductivity of objects) alone. In the course of sensory experience, however, changes occur in visual and sensorimotor connection strengths, with two major consequences. First, units within the higher visual area acquire responses that are both pattern selective and translation invariant. Second, as a result of the operation of the value system, these responses become linked to appropriate behaviors. Analysis of Darwin V after such changes indicates that the continuity of self-generated movements is essential for the development of pattern-selective and translation-invariant responses. The concomitant development of a preference for foveal over parafoveal objects was found to be due to increased behavioral interactions with object cubes gripped by the centrally mounted effector (snout) of Darwin V. Finally, even after development of higher-order visual responses, visual responses to more frequently encountered objects continued to be enhanced, while other responses were diminished. Overall, the detailed study of Darwin V over multiple levels of organization provides a heuristically revealing example of the crucial role played by behavioral and environmental interactions in the development of complex responses by specialized neurons.  相似文献   

6.
To clarify the role of primary and second somatosensory cortex (SI and SII) in somatosensory discrimination, we recorded somatosensory evoked magnetic fields during a stimulus strength discrimination task. The temporal pattern of cortical activation was analyzed by dipole source model coregistered with magnetic resonance image. Stimulus intensity was represented in SI as early as 20 ms after the stimulus presentation. The later components of SI response (latency 37.7 and 67.9 ms) were enhanced by rarely presented stimuli (stimulus deviancy) during passive and active attention. This supports an early haptic memory mechanism in human primary sensory cortex. Contra- and ipsilateral SII responses followed the SI responses (latency 124.6 and 138.3 ms, respectively) and were enhanced by attention more prominently than the SI responses. Active attention increased SII but not SI activity. These results are consistent with the concept of ventral somatosensory pathway that SI and SII are hierarchically organized for passive and active detection of discrete stimuli.  相似文献   

7.
How does the brain process visual information about self-motion? In monkey cortex, the analysis of visual motion is performed by successive areas specialized in different aspects of motion processing. Whereas neurons in the middle temporal (MT) area are direction-selective for local motion, neurons in the medial superior temporal (MST) area respond to motion patterns. A neural network model attempts to link these properties to the psychophysics of human heading detection from optic flow. It proposes that populations of neurons represent specific directions of heading. We quantitatively compared single-unit recordings in area MST with single-neuron simulations in this model. Predictions were derived from simulations and subsequently tested in recorded neurons. Neuronal activities depended on the position of the singular point in the optic flow. Best responses to opposing motions occurred for opposite locations of the singular point in the visual field. Excitation by one type of motion is paired with inhibition by the opposite motion. Activity maxima often occur for peripheral singular points. The averaged recorded shape of the response modulations is sigmoidal, which is in agreement with model predictions. We also tested whether the activity of the neuronal population in MST can represent the directions of heading in our stimuli. A simple least-mean-square minimization could retrieve the direction of heading from the neuronal activities with a precision of 4.3 degrees. Our results show good agreement between the proposed model and the neuronal responses in area MST and further support the hypothesis that area MST is involved in visual navigation.  相似文献   

8.
We examined the responsivity, orientation selectivity, and direction selectivity of a sample of neurons in cortical area V1 of the macaque using visual stimuli consisting of drifting oriented contours defined by each of two very different figural cues: luminance contrast and temporal texture. Comparisons of orientation and direction tuning elicited by the different cues were made in order to test the hypothesis that the neuronal representations of these parameters are form-cue invariant. The majority of the sampled cells responded to both stimulus types, although responses to temporal texture stimuli were generally weaker than those elicited by luminance-defined stimuli. Of those units exhibiting orientation selectivity when tested with the luminance-defined stimuli, more than half were also selective for the orientation of the temporal texture stimuli. There was close correspondence between the preferred orientations and tuning bandwidths revealed with the two stimulus types. Of those units exhibiting directional selectivity when tested with the luminance-defined stimuli, about two-thirds were also selective for the direction of the temporal texture stimuli. There was close correspondence between the preferred directions revealed with the two stimulus types, although bidirectional responses were somewhat more common when temporal texture stimuli were used. These results indicate that many V1 neurons encode orientation and direction of motion of retinal image features in a manner that is largely independent of whether the feature is defined by luminance or temporal texture contrast. These neurons may contribute to perceptual phenomena in which figural cue identity is disregarded.  相似文献   

9.
How random is the discharge pattern of cortical neurons? We examined recordings from primary visual cortex (V1; Knierim and Van Essen, 1992) and extrastriate cortex (MT; Newsome et al., 1989a) of awake, behaving macaque monkey and compared them to analytical predictions. For nonbursting cells firing at sustained rates up to 300 Hz, we evaluated two indices of firing variability: the ratio of the variance to the mean for the number of action potentials evoked by a constant stimulus, and the rate-normalized coefficient of variation (Cv) of the interspike interval distribution. Firing in virtually all V1 and MT neurons was nearly consistent with a completely random process (e.g., Cv approximately 1). We tried to model this high variability by small, independent, and random EPSPs converging onto a leaky integrate-and-fire neuron (Knight, 1972). Both this and related models predicted very low firing variability (Cv < 1) for realistic EPSP depolarizations and membrane time constants. We also simulated a biophysically very detailed compartmental model of an anatomically reconstructed and physiologically characterized layer V cat pyramidal cell (Douglas et al., 1991) with passive dendrites and active soma. If independent, excitatory synaptic input fired the model cell at the high rates observed in monkey, the Cv and the variability in the number of spikes were both very low, in agreement with the integrate-and-fire models but in strong disagreement with the majority of our monkey data. The simulated cell only produced highly variable firing when Hodgkin-Huxley-like currents (INa and very strong IDR) were placed on distal dendrites. Now the simulated neuron acted more as a millisecond-resolution detector of dendritic spike coincidences than as a temporal integrator. We argue that neurons that act as temporal integrators over many synaptic inputs must fire very regularly. Only in the presence of either fast and strong dendritic nonlinearities or strong synchronization among individual synaptic events will the degree of predicted variability approach that of real cortical neurons.  相似文献   

10.
11.
1. The primate orbitofrontal cortex receives inputs from the primary olfactory (pyriform) cortex and also from the primary taste cortex. To investigate how olfactory information is encoded in the orbitofrontal cortex, the responses of single neurons in the orbitofrontal cortex and surrounding areas were recorded during the performance of an olfactory discrimination task. In the task, the delivery of one of eight different odors indicated that the monkey could lick to obtain a taste of sucrose. If one of two other odors was delivered from the olfactometer, the monkey had to refrain from licking, otherwise he received a taste of saline. 2. Of the 1,580 neurons recorded in the orbitofrontal cortex, 3.1% (48) had olfactory responses and 34 (2.2%) responded differently to the different odors in the task. The neurons responded with a typical latency of 180 ms from the onset of odorant delivery. 3. Of the olfactory neurons with differential responses in the task, 35% responded solely on the basis of the taste reward association of the odorants. Such neurons responded either to all the rewarded stimuli, and none of the saline-associated stimuli, or vice versa. 4. The remaining 65% of these neurons showed differential selectivity for the stimuli based on the odor quality and not on the taste reward association of the odor. 5. The findings show that the olfactory representation within the orbitofrontal cortex reflects for some neurons (65%) which odor is present independently of its association with taste reward, and that for other neurons (35%), the olfactory response reflects (and encodes) the taste association of the odor. The additional finding that some of the odor-responsive neurons were also responsive to taste stimuli supports the hypothesis that odor-taste association learning at the level of single neurons in the orbitofrontal cortex enables such cells to show olfactory responses that reflect the taste association of the odor.  相似文献   

12.
1. Mechanisms underlying cortical reorganizations were studied using a three-layered neural network model with neuronal groups already formed in the cortical layer. 2. Dynamic changes induced in cortex by behavioral training or intracortical microstimulation (ICMS) were simulated. Both manipulations resulted in reassembly of neuronal groups and formation of stimulus-dependent assemblies. Receptive fields of neurons and cortical representation of inputs also changed. Many neurons that had been weakly responsive or silent became active. 3. Several types of learning models were examined in simulating behavioral training, ICMS-induced dynamic changes, deafferentation, or cortical lesion. Each learning model most accurately reproduced features of experimental data from different manipulations, suggesting that more than one plasticity mechanism might be able to induce dynamic changes in cortex. 4. After skin or cortical stimulation ceased, as spontaneous activity continued, the stimulus-dependent assemblies gradually reverted into structure-dependent neuronal groups. However, relationships among individual neurons and identities of many neurons did not return to their original states. Thus a different set of neurons would be recruited by the same training stimulus sequence on its next presentation. 5. We also reproduced several typical long-term reorganizations caused by pathological manipulations such as cortical lesions, input loss, and digit fusion. 6. In summary, with Hebbian plasticity rules on lateral connections, the network model is capable of reproducing most characteristics of experiments on cortical reorganization. We propose that an important mechanism underlying cortical plastic changes is formation of temporary assemblies that are related to receipt of strongly synchronized localized input. Such stimulus-dependent assemblies can be dissolved by spontaneous activity after removal of the stimuli.  相似文献   

13.
To investigate cortical activities related to the visual recognition of characters, we recorded the magnetoencephalography (MEG) in six normal subjects who were encouraged to discriminate capital English letters displayed for a brief period. To reduce the primary responses evoked by the luminance change in the striate cortex (V1), we used a novel stimulus method, random dots blinking (RDB), by means of the temporal changes of patterns using a large number of small random dots. Along with the MEG recording, we also measured the discrimination accuracy rate (%) to know how well the subjects recognized the letters. One clear component, about 300 ms in peak latency, was identified in all six subjects. Its peak amplitude and the discrimination accuracy rate increased similarly as the character display duration became longer. Its signal source was estimated in the extrastriate cortex, around the fusiform gyrus, in the right hemisphere. We suspect that the activity in these cortical areas has strong relation to the conscious perception of characters.  相似文献   

14.
The division of the auditory cortex into various fields, functional aspects of these fields, and neuronal coding in the primary auditory cortical field (AI) are reviewed with stress on features that may be common to mammals. On the basis of 14 topographies and clustered distributions of neuronal response characteristics in the primary auditory cortical field, a hypothesis is developed of how a certain complex acoustic pattern may be encoded in an equivalent spatial activity pattern in AI, generated by time-coordinated firing of groups of neurons. The auditory cortex, demonstrated specifically for AI, appears to perform sound analysis by synthesis, i.e. by combining spatially distributed coincident or time-coordinated neuronal responses. The dynamics of sounds and the plasticity of cortical responses are considered as a topic for research.  相似文献   

15.
We recorded the activity of single neurons in the middle temporal (MT) and middle superior temporal (MST) visual areas in two macaque monkeys while the animals performed a smooth pursuit target selection task. The monkeys were presented with two moving stimuli of different colors and were trained to initiate smooth pursuit to the stimulus that matched the color of a previously given cue. We designed these experiments so that we could separate the component of the neuronal response that was driven by the visual stimulus from an extraretinal component that predicted the color or direction of the selected target. We found that for all cells in MT and MST the response was primarily determined by the visual stimulus. However, 14% (8 of 58) of MT neurons and 26% (22 of 84) of MST neurons had a small predictive component that was significant at the P < or = 0.05 level. In some cells, the predictive component was clearly related to the color of the intended target, but more often it was correlated with the direction of the target. We have previously documented a systematic shift in the latency of smooth pursuit that depends on the relative direction of motion of the two stimuli. We found that neither the latency nor the amplitude of neuronal responses in MT or MST was correlated with behavioral latency. These results are consistent with a model for target selection in which a weak selection bias for the intended target is amplified by a competitive network that suppresses motion signals related to the nonintended stimulus. It is possible that the predictive component of neuronal responses in MT and MST contributes to the selection bias. However, the strength of the selection bias in MT and MST is not sufficient to account for the high degree of selectivity shown by pursuit behavior.  相似文献   

16.
Progressively increasing (augmenting) responses are elicited in thalamocortical systems by repetitive stimuli at approximately 10 Hz. Repeated pulse trains at this frequency lead to a form of short-term plasticity consisting of a persistent increase in depolarizing synaptic responses as well as a prolonged decrease in inhibitory responses. In this study, we have investigated the role of thalamocortical (TC) and neocortical neurons in the initiation of thalamically and cortically evoked augmenting responses. Dual intracellular recordings in anesthetized cats show that thalamically evoked augmenting responses of neocortical neurons stem from a secondary depolarization (mean onset latency of 11 msec) that develops in association with a diminution of the early EPSP. Two nonexclusive mechanisms may underlie the increased secondary depolarization during augmentation: the rebound spike bursts initiated in simultaneously recorded TC cells, which precede by approximately 3 msec the onset of augmenting responses in cortical neurons; and low-threshold responses, uncovered by hyperpolarization in cortical neurons, which may follow EPSPs triggered by TC volleys. Thalamic stimulation proved to be more efficient than cortical stimulation at producing augmenting responses. Stronger augmenting responses in neocortical neurons were found in deeply located (<0.8 mm, layers V-VI) regular-spiking and fast rhythmic-bursting neurons than in superficial neurons. Although cortical augmenting responses are preceded by rebound spike bursts in TC cells, the duration of the self-sustained postaugmenting oscillatory activity in cortical neurons exceeds that observed in TC neurons. These results emphasize the role of interconnected TC and cortical neurons in the production of augmenting responses leading to short-term plasticity processes.  相似文献   

17.
With the purpose of localising the cerebral cortical areas participating in the discrimination of visual form generated exclusively by texture cues, we measured changes in regional cerebral blood flow (rCBF) with positron emissions tomography (PET) and 15O-butanol as the tracer. The subjects performed two odd-one-out discrimination tasks: a form-from-texture discrimination task (in which a visual form was defined by differences in texture) and its reference task, the discrimination of texture. During task performance, activated fields were present bilaterally in the primary visual cortex and its immediate extrastriate cortex, the right lateral occipital gyrus, bilaterally in the fusiform and superior temporal gyri and posterior parts of the superior parietal lobules, along the medial bank of the right intraparietal sulcus, and in the right supramarginal gyrus. Other fields were found in the cingulate and prefrontal cortex. The findings demonstrate that the discrimination of visual form as defined by texture engages cortical fields that are widely distributed ion the human brain. In the visual cortex, the activated fields are present in both the occipito-temporal and occipito-parietal visual areas. These results suggest that the perception and discrimination of forms in the visual system requires the joint-activation of neuronal populations in the visual cortex.  相似文献   

18.
Single-unit recording studies of posterior parietal neurons have indicated a similarity of neuronal activation to that observed in the dorsolateral prefrontal cortex in relation to performance of delayed saccade tasks. A key issue addressed in the present study is whether the different classes of neuronal activity observed in these tasks are encountered more frequently in one or the other area or otherwise exhibit region-specific properties. The present study is the first to directly compare these patterns of neuronal activity by alternately recording from parietal area 7ip and prefrontal area 8a, under the identical behavioral conditions, within the same hemisphere of two monkeys performing an oculomotor delayed response task. The firing rate of 222 posterior parietal and 235 prefrontal neurons significantly changed during the cue, delay, and/or saccade periods of the task. Neuronal responses in the two areas could be distinguished only by subtle differences in their incidence and timing. Thus neurons responding to the cue appeared earliest and were more frequent among the task-related neurons within parietal cortex, whereas neurons exhibiting delay-period activity accounted for a larger proportion of task-related neurons in prefrontal cortex. Otherwise, the task-related neuronal activities were remarkably similar. Cue period activity in prefrontal and parietal cortex exhibited comparable spatial tuning and temporal duration characteristics, taking the form of phasic, tonic, or combined phasic/tonic excitation in both cortical populations. Neurons in both cortical areas exhibited sustained activity during the delay period with nearly identical spatial tuning. The various patterns of delay-period activity-tonic, increasing or decreasing, alone or in combination with greater activation during cue and/or saccade periods-likewise were distributed to both cortical areas. Finally, similarities in the two populations extended to the proportion and spatial tuning of presaccadic and postsaccadic neuronal activity occurring in relation to the memory-guided saccade. The present findings support and extend evidence for a faithful duplication of receptive field properties and virtually every other dimension of task-related activity observed when parietal and prefrontal cortex are recruited to a common task. This striking similarity attests to the principal that information shared by a prefrontal region and a sensory association area with which it is connected is domain specific and not subject to hierarchical elaboration, as is evident at earlier stages of visuospatial processing.  相似文献   

19.
Injuries to the brain induce rapid expression of c-fos and c-jun proto-oncogenes in neurons. The protein products (Fos and Jun) of these cellular immediate early genes are thought to regulate target genes that participate in fundamental biological responses. In recent studies of rat brain infarct we demonstrated that gliosis and angiogenesis, two of the fundamental biological responses, are related to neuronal expression of basic fibroblast growth factor (bFGF). In the present study, we explore the linkage between c-fos and bFGF genes by comparing the temporal and spatial domains of Fos and bFGF immunoreactivities (IR) in brain infarct and in transient global ischemia. We demonstrate colocalization of Fos-IR and ischemic changes in neurons at infarct periphery and in regions of "selective vulnerability" beginning 3 hours post-infarction and lasting up to 1-2 weeks. These are: cortical neurons in layers II-III and V, interneurons in hippocampal formation, cerebellar Purkinje cells, and many subcortical nuclei and brainstem nuclei. bFGF-IR appears 12-24 hours later than Fos-IR in the same region but in non-ischemic neurons and the expression persists beyond 2 weeks. Persistent and not transient c-fos expression appears to be associated with ischemic neuronal death, although some of these neurons may survive beyond 2 weeks postinfarction.  相似文献   

20.
The nocturnal, New World owl monkey (Aotus trivirgatus) has a rod-dominated retina containing only a single cone type, supporting only the most rudimentary color vision. However, it does have well-developed magnocellular (M) and parvocellular (P) retinostriate pathways and striate cortical architecture [as defined by the pattern of staining for the activity-dependent marker cytochrome oxidase (CO)] similar to that seen in diurnal primates. We recorded from single neurons in anesthetized, paralyzed owl monkeys using drifting, luminance-modulated sinusoidal gratings, comparing receptive field properties of M and P neurons in the lateral geniculate nucleus and in V1 neurons assigned to CO "blob," "edge," and "interblob" regions and across layers. Tested with achromatic stimuli, the receptive field properties of M and P neurons resembled those reported for other primates. The contrast sensitivity of P cells in the owl monkey was similar to that of P cells in the macaque, but the contrast sensitivities of M cells in the owl monkey were markedly lower than those in the macaque. We found no differences in eye dominance, orientation, or spatial frequency tuning, temporal frequency tuning, or contrast response for V1 neurons assigned to different CO compartments; we did find fewer direction-selective cells in blobs than in other compartments. We noticed laminar differences in some receptive field properties. Cells in the supragranular layers preferred higher spatial and lower temporal frequencies and had lower contrast sensitivity than did cells in the granular and infragranular layers. Our data suggest that the receptive field properties across functional compartments in V1 are quite homogeneous, inconsistent with the notion that CO blobs anatomically segregate signals from different functional "streams."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号