首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vivo labelling of 5-hydroxytryptamine (5-HT)1A receptors in the mouse brain was studied with the novel selective 5-HT1A receptor antagonist, NAD-299 ((R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran- 5-carboxamide hydrogen (2R,3R)-tartrate monohydrate). 3H-NAD-299 was injected in a tail vein and the radioactivity in various brain regions was determined. More than 90% of the radioactivity in hippocampus, 15 min after the injection, was intact NAD-299. At this time the amount of 3H-NAD-299 was highest in hippocampus followed by frontal cortex, mesencephalon, hypothalamus, striatum and cerebellum. The specific accumulation of radioactivity (after subtracting cerebellum values) in frontal cortex and hippocampus was maximal 10 to 30 min after the injection and had almost disappeared after 2 h. Saturation kinetics derived Bmax (pmol/g wet weight tissue) values of 19.6+/-2.0 in frontal cortex and 38.0+/-3.5 in hippocampus. The apparent Kd values expressed in nmol/kg 3H-NAD-299 injected, were 12.3+/-2.2 in frontal cortex and 20.3+/-3.1 in hippocampus. The 5-HT1A receptor antagonist, WAY-100,635 competitively inhibited the specific accumulation of 3H-NAD-299 and was about equipotent with unlabelled NAD-299 with ED50 values of 20-30 nmol/kg s.c. These compounds were about 10 times more potent than the 5-HT1A receptor antagonists, p-MPPI and NDL-249 and 100 times more potent than (S)-UH-301. 5-HT1A receptor agonists, e.g. 8-OH-DPAT and flesinoxan and partial agonists, e.g. pindolol, buspirone and ipsapirone had low potency in this in vivo assay. Spiperone and methiothepin inhibited the 3H-NAD-299 accumulation at 10 micromol/kg s.c. The alpha1-adrenoceptor antagonist, prazosin at 2 micromol/kg s.c. increased significantly the specific accumulation of 3H-NAD-299. Pretreatment of the mice with the non-selective, irreversible receptor antagonist, EEDQ produced a dose related long-lasting decrease in the accumulation of 3H-NAD-299. It is concluded that NAD-299 is a very suitable ligand for studies of 5-HT1A receptors in the brain in vivo.  相似文献   

2.
Single-unit recording studies were undertaken in chloral hydrate-anesthetized rats to compare the effects on dorsal raphe cell firing of several putative 5-hydroxytryptamine (HT)1A receptor antagonists, including WAY 100635 (N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridinyl) cyclohexanecarboxamide), p-MPPI (4-(2-methoxyphenyl)1-[2'-[N-(2"-pyridinyl)-p-iodobenzamido]ethyl] pip erazine), and two newly described 5-HT1A receptor antagonists, NDL-249 [(R)-3-(N-propylamino)-8-fluoro-3, 4-dihydro-2H-1-benzopyran-5-carboxamide] and NAD-299 [(R)-3-N, N-dicyclobutylamino-8-fluoro-3, 4-dihydro-2H-1-benzopyran-5-carboxamide]. Consistent with a 5-HT1A receptor antagonist profile, pretreatment with an approximately equimolar (0.02-0.03 micromol/kg) i.v. dose of each compound caused a significant rightward shift in the dose-response curve for 8-OH-DPAT [8-hydroxy-2-(di-n-propylamino)tetralin]. Antagonist potency was clearly highest for NAD-299 and WAY 100635, which caused shifts roughly 3 times greater than those for either p-MPPI or NDL-249 (ED50 for 8-OH-DPAT, 1.3 +/- 0.3 microg/kg; after NAD-299, 18.2 +/- 1.0 microg/kg; after WAY 100635, 16.9 +/- 2.9 microg/kg; after NDL-249, 6.0 +/- 1.2 microg/kg; after p-MPPI, 4.7 +/- 1.1 microg/kg). In separate studies, each of the antagonists was administered alone in increasing cumulative doses to evaluate whether they possessed intrinsic agonist activity in this system. At doses below 0.01 micromol/kg, none of the drugs altered firing by more than +/-20% basal rates. At higher doses (>0.1 micromol/kg), WAY 100635, NDL-249, and NAD-299 caused a dose-dependent suppression of dorsal raphe cell firing (ED50 = 0.6 +/- 0.2, 0.7 +/- 0.3, and 0. 9 +/- 0.4 micromol/kg, respectively). However, the ED50 values for inhibition by these drugs were roughly 30 times higher than the doses that antagonized effects of 8-OH-DPAT. Moreover, the inhibition by all three antagonists (but not 8-OH-DPAT) was readily reversed by d-amphetamine (3.2 mg/kg i.v.), a releaser of norepinephrine, suggesting that these effects were likely due to alpha adrenergic receptor blockade rather than to 5-HT1A receptor agonism. Thus, it was concluded that WAY 100635, NAD-299, NDL-249, and p-MPPI all fulfill criteria as 5-HT1A receptor antagonists lacking intrinsic efficacy in the dorsal raphe system. The newly described compound NAD-299 exhibits antagonist potency comparable to that of WAY 100635 in this electrophysiological assay.  相似文献   

3.
A novel irreversible 5-HT1A receptor binding ligand, NCS-MPP (4-(2'- methoxy-phenyl)-1-[2'-(N-2"-pyridyl)-p-isothiocyanobenzamido]- ethyl-piperazine), based on the new 5-HT1A receptor antagonist p-MPPI (4-(2'-methoxy-phenyl)-1-[2'-(N-2"-pyridyl)-p-iodobenzamido]-ethyl -piperazine ), was synthesized, and its binding characteristics were evaluated using in vitro homogenate binding with rat hippocampal membranes. The Ki value of NCS-MPP was estimated to be 1.8 +_ 0.2 nM using analysis of concentration-dependent inhibition for the binding of [125I]p-MPPI to 5-HT1A receptors. NovaScreen of NCS-MPP showed low to moderate binding affinities to alpha-1, alpha-2-adrenergic and 5-HT2 receptors, with Ki values of 350, 420, and 103 nM, respectively. These data strongly suggest that the ligand bound to 5-HT1A receptors with high affinity and high selectivity. Irreversible inhibition of [125I]p-MPPI binding by NCS-MPP following a 5 min incubation at room temperature was concentration dependent; the inhibition increased to 50% at a concentration less than 10 nM, and became more pronounced (90%) at 400 nM. Under similar assay conditions, NCS-MPP was significantly less efficient in irreversibly inhibiting agonist ligand [125I]8-OH-PIPAT binding to 5-HT1A receptors at lower concentrations (<10nM). After pretreatment of membranes with a low concentration of NCS-MPP (2nM), there was an apparent loss of [125I]p-MPPI binding sites, as expected, but no change in the binding affinity (Kd) was observed. However, the significant increase in Kd at a higher concentration of NCS-MPP (50 nM) indicated that there may be a secondary alkylation site, which may not be directly involved in p-MPPI binding to receptors; nevertheless, it would lead to an increased Kd value. The availability of an irreversible ligand, NCS-MPP, may provide a useful tool for studies of 5-HT1A receptors in the central nervous system.  相似文献   

4.
1. Ejaculatory problems and anorgasmia are well-known side-effects of the SSRI antidepressants, and a pharmacologically induced increase in serotonergic neurotransmission inhibits ejaculatory behaviour in the rat. In the present study the role of 5-HT1A and 5-HT1B receptors in the mediation of male rat ejaculatory behaviour was examined by use of selective agonists and antagonists acting at these 5-HT receptor subtypes. 2. The 5-HT1A receptor agonist 8-OH-DPAT (0.25-4.00 micromol kg(-1) s.c.) produced an expected facilitation of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the new selective 5-HT1A receptor antagonist (R)-3-N,N-dicyclobutylamino-8-fluoro-3,4-dihydro-2H-1-benzopyran-5 -carboxamide hydrogen (2R,3R) tartrate monohydrate (NAD-299) (1.0 micromol kg(-1) s.c.). NAD-299 by itself (0.75-3.00 micromol kg(-1) s.c.) did not affect the male rat ejaculatory behaviour. 3. The 5-HT1B receptor agonist anpirtoline (0.25-4.00 micromol kg(-1) s.c.) produced a dose-dependent inhibition of the male rat ejaculatory behaviour, and this effect was fully antagonized by pretreatment with the 5-HT1B receptor antagonist isamoltane (16 micromol kg(-1) s.c.) as well as by the new and selective antagonist (R)-(+)-2-(3-morpholinomethyl-2H-chromene-8-yl)oxymethylmorphol ino methansulphonate (NAS-181) (16 micromol kg(-1) s.c.). Isamoltane (1.0-16.0 micromol kg(-1) s.c.) and NAD-181 (1.0-16.0 micromol kg(-1) s.c.) had no, or weakly facilitatory effects on the male rat ejaculatory behaviour. The non-selective 5-HT1 receptor antagonist (-)-pindolol (8 micromol kg(-1) s.c.), did not antagonize the inhibition produced by anpirtoline. 4. The present results demonstrate opposite effects, facilitation and inhibition, of male rat ejaculatory behaviour by stimulation of 5-HT1A and 5-HT1B receptors, respectively, suggesting that the SSRI-induced inhibition of male ejaculatory dysfunction is due to 5-HT1B receptor stimulation.  相似文献   

5.
The administration of the 5-hydroxytryptamine (5-HT) precursor 5-hydroxytryptophan (5-HTP) (25 mg/kg i.p.), in combination with an inhibitor of peripheral 5-HTP decarboxylase, produced a dose-dependent increase in the ejaculation latency of male rats, and this effect was enhanced by additional treatment with the 5-HT1 receptor antagonist (-)-pindolol (2 mg/kg s.c.). The 5-HT2A/C receptor agonist (+/-) 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) (0.125-0.5 mg/kg s.c.) did not by itself affect male ejaculatory behavior, but additional treatment with (-)-pindolol (2 mg/kg s.c.) produced a dose-dependent decrease in number of ejaculating animals. The increased ejaculation latency produced by 5-HTP was fully antagonized by treatment with the 5-HT1B receptor antagonist isamoltane (4 mg/kg s.c.), but not by ritanserin (2 mg/kg s.c.) treatment. The selective 5-HT1A receptor antagonist WAY-100635 (0.15 mg/kg s.c.) enhanced the inhibitory actions of 5-HTP on the male rat ejaculatory behavior, and this dose of WAY-100635 fully antagonized 8-OH-DPAT-induced facilitation (0.25 mg/kg s.c.) of the ejaculatory behavior. WAY-100635 (0.04-0.60 mg/kg s.c.) did not, by itself, significantly affect male rat sexual behavior. Taken together, the results suggest an inhibitory role for postsynaptic 5-HT1B receptors in the effects produced by 5-HTP on male rat ejaculatory behavior. Furthermore, 5-HTP-induced inhibition of male rat ejaculatory behavior is partially controlled by stimulation of inhibitory 5-HT1A autoreceptors, since the effects of 5-HTP were accentuated by treatment with (-)-pindolol, as well as by the more selective 5-HT1A receptor antagonist WAY-100635.  相似文献   

6.
We analyzed the displacement activity of sarpogrelate and its active metabolite (M-1) in the radiolabeled ligand binding to various 5-hydroxytryptamine (5-HT) receptor subtypes using rat brain cortical membranes. Sarpogrelate was shown to have the same affinity as ritanserin for 5-HT2A receptors, with a Ki value of 8.39 nM. The active metabolite of sarpogrelate, M-1, was more active than sarpogrelate itself and of ritanserin, with a Ki value of 1.70 nM. Both sarpogrelate and M-1 had no affinity for 5-HT1A receptors, but these substances, at a concentration of 10 microM, displaced the specific binding to the 5-HT1B receptors of [125I]iodocyanopindolol, resulting in Ki values of 0.881 and 0.859 microM, respectively. The Ki values of sarpogrelate and M-1 are almost the same as that of ritanserin, a specific 5-HT2 receptor antagonist. Sarpogrelate and M-1, as well as ritanserin, are shown to have very low affinity for 5-HT1B receptors. Both sarpogrelate and M-1 had no affinity for 5-HT3 receptor subtypes. In the 5-HT4 receptor binding experiments, sarpogrelate exhibited almost no affinity, while M-1, at the concentration of 10 microM, displaced the binding activity, resulting in a Ki value of 0.838 microM. Both drugs had a weak antagonistic effect on a 5-HT4 receptor-mediated function, i.e., the 5-HT-induced relaxation of rat isolated esophageal tunica muscularis mucosae. In conclusion, sarpogrelate and M-1 have high affinity for 5-HT2A receptors with a relatively high selectivity.  相似文献   

7.
A series of four racemic ring-substituted trans-2-(indol-3-yl)cyclopropylamine derivatives was synthesized and tested for affinity at the 5-HT1A receptor, by competition with [3H]-8-OH-DPAT in rat hippocampal homogenates, and for affinity at the agonist-labeled cloned human 5-HT2A, 5-HT2B, and 5-HT2C receptor subtypes. None of the compounds had high affinity for the 5-HT1A receptor, with the 5-methoxy substitution being most potent (40 nM). At the 5-HT2A and 5-HT2B receptor isoforms, most of the compounds lacked high affinity. At the 5-HT2C receptor, however, affinities were considerably higher. The 5-fluoro-substituted compound was most potent, with a Ki at the 5-HT2C receptor of 1.9 nM. In addition, the 1R,2S-(-) and 1S,2R-(+) enantiomers of the unsubstituted compound were also evaluated at the 5-HT2 isoforms. While the 1R,2S enantiomer had higher affinity at the 5-HT2A and 5-HT2B sites, the 1S,2R isomer had highest affinity at the 5-HT2C receptor. This reversal of stereoselectivity may offer leads to the development of a selective 5-HT2C receptor agonist. The cyclopropylamine moiety therefore appears to be a good strategy for rigidification of the ethylamine side chain only for tryptamines that bind to the 5-HT2C receptor isoform.  相似文献   

8.
The 5-hydroxytryptamine (5-HT)1B/1D receptor subtypes are involved in the regulation of 5-HT release and have gained particular interest because of their apparent role in migraine. Although selective antagonists for both receptor subtypes recently have been developed, the receptor domains involved in the pharmacological specificity of these antagonists are defined poorly. This was investigated with a chimeric 5-HT1B/1D receptor analysis and using ketanserin as a selective antagonist of h5-HT1D (h5-HT1D) Ki = 24-27 nM) as opposed to h5-HT1B (Ki = 2193-2902 nM) receptors. A domain of the h5-HT1D receptor encompassing the second extracellular loop and the fifth transmembrane domain is necessary and sufficient to promote higher affinity binding (Ki = 65-115 nM) for ketanserin to the h5-HT1B receptor. The same domain of the h5-HT1B receptor, when exchanged in the h5-HT1D receptor, abolished high affinity binding of ketanserin (Ki = 364-1265 nM). A similar observation was made with the antagonist ritanserin and seems specific because besides the unmodified binding affinities for 5-HT and zolmitriptan, only minor modifications (2-4-fold) were observed for the agonists L 694247 and sumatriptan and the antagonists GR 127935 and SB 224289. Generating point mutations of divergent amino acids compared with the h5-HT1B receptor did not demonstrate a smaller peptide region related to a significant modification of ketanserin binding. The antagonists ketanserin and ritanserin are likely to bind the h5-HT1D receptor by its second extracellular loop, near the exofacial surface of the fifth transmembrane domain, or both.  相似文献   

9.
The receptor binding and biochemical effects of the putative dopamine (DA) partial agonist CI-1007 ([R(+)-1,2,3,6-tetrahydro-4-phenyl- 1-[(3-phenyl-3-cyclohexen-1-yl)methyl]pyridine] maleate) and potential antipsychotic were evaluated with a variety of biochemical methods. In receptor binding studies, CI-1007 bound to rat striatal DA receptors exhibiting a Ki of 3 nM as assessed by inhibition of [3H]N-propylnorapomorphine binding. CI-1007 also exhibited high affinity for cloned human D2L (Ki = 25.5 nM) and D3 (Ki = 16.6 nM) receptors with less affinity for D4.2 receptors (Ki = 90.9 nM). The affinity for serotonin-1A (5-HT-1A), alpha-2 adrenergic and 5-HT-2 receptors was moderate (submicromolar range) and slight or negligible for alpha-1, DA D1 and various other receptors. Unlike dopamine, the inhibition of [3H]spiperone binding was monophasic for CI-1007 and only slightly affected by the addition of Gpp-(NH)p. In vitro CI-1007 antagonized the forskolin-induced increases in cyclic AMP levels in GH4C1 cells expressing the human D2L receptor, having an intrinsic activity of 53% of that seen with the full agonist quinpirole. In vivo CI-1007 antagonized the gamma-butyrolactone (GBL)-induced accumulation of L-3,4-dihydroxyphenylalanine in striatum and mesolimbic regions of rat brain, causing a maximal 64% reversal in striatum, consistent with a partial agonist profile. In microdialysis studies it decreased DA overflow in both striatum and nucleus accumbens, indicating decreased release of DA. CI-1007 also reduced brain DA synthesis (DOPA accumulation), metabolism (DOPAC and HVA) and utilization (after tyrosine hydroxylase inhibition with alpha-methyl-p-tyrosine). CI-1007 did not affect striatal acetylcholine levels indicating lack of potent postsynaptic DA actions. CI-1007 seemed to be selective for DA neurons as it did not alter rat brain norepinephrine (NE) synthesis in the NE-enriched brainstem or NE utilization in the mesolimbic region. In addition, it did not affect in general 5-HT synthesis and metabolism in striatum and mesolimbic regions. These neurochemical results demonstrate that CI-1007 is a selective potent brain dopamine partial agonist with limited agonist activity at postsynaptic DA receptors.  相似文献   

10.
Although the beta-adrenergic antagonist propranolol (1) binds at rodent 5-HT1B serotonin receptors, it displays low affinity (Ki > 10,000 nM) for its species homologue 5-HT1D beta (i.e., h5-HT1B) receptors. The structure of propranolol was systematically modified in an attempt to enhance its affinity for the latter population of receptors. Removal of the alkyl hydroxyl group, shortening of the O-alkyl chain from three to two methylene groups, and variation of the terminal amine substituent resulted in compounds, such as N-monomethyl-2-(1-naphthyloxy)-ethylamine (11; Ki = 26 nM), that display significantly higher h5-HT1B affinity than propranolol. Compound 11 was shown to bind equally well at human 5-HT1D alpha (h5-HT1D) receptors (Ki = 34 nM) and was further demonstrated to possess h5-HT1B agonist character in an adenylate cyclase assay. It would appear that such (aryloxy)alkylamines may represent a novel class of 5-HT1D receptor agonists.  相似文献   

11.
A series of 1-?omega-(4-aryl-1-piperazinyl)alkyl]indolin-2(1H)-one derivatives 2-14 was synthesized in order to obtain ligands with a dual 5-HT1A/5-HT2A activity. The majority of those compounds (2-5, 7, 10-13) exhibited a high 5-HT1A (Ki = 2-44 nM) and/or 5-HT2A affinity (Ki = 51 and 39 for 5 and 7, respectively). Induction of lower lip retraction (LLR) and behavioral syndrome and inhibition of these effects evoked by 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) were used for determination the agonistic and antagonistic activity, respectively, at 5-HT1A receptors. The 5-HT2A antagonistic activity was assessed by the blocking effect on the head twitches induced by (+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) in mice. Two of the tested compounds, 1-?3-[4-(3-chlorophenyl)-1-piperazinyl]propyl?-6-fluoroindolin-2(1 H)-one (5) and 1-?3-[4-(2-methoxyphenyl)-1-piperazinyl]propyl?indolin-2(1H)-one (7), demonstrated a high 5-HT1A/5-HT2A affinity and an in vivo antagonistic activity towards both receptor subtypes.  相似文献   

12.
The purpose of this study was to characterize the pharmacological effects of 2-[[4-(o-methoxyphenyl)piperazin-1-yl]methyl]-1,3-dioxoperhydro imidazo[1,5-a]pyridine (B-20991) by using several biochemical and behavioral assays. Results of binding studies showed that B-20991 binds with high affinity to the 5-HT1A receptor (Ki = 31.7 +/- 1.7 nM), moderate affinity to 5-HT3 receptor (Ki = 269.4 +/- 23.2 nM) and low affinity (Ki > 1000) to 5-HT2A receptor, dopamine D2 receptor, benzodiazepine receptors and alpha1-adrenoceptor. The administration of B-20991 produced a dose and time related decrease in mouse rectal temperature, increased both lower lip retraction and flat body posture behavioral scores in rat, decreased 5-hydroxytryptamine (5-HT, serotonin) neuronal activity in mouse hypothalamus, and did not alter dopamine neuronal activity nor locomotor activity. The anxiolytic activity of B-20991 was assessed by using both the social interaction and light/dark box tests. The results of these tests indicated that B-20991 caused a dose-related increase in the social interaction and light/dark box behavioral scores. Taken together, these results suggest that B-20991 is a 5-HT1A receptor agonist that exhibits anxiolytic activity.  相似文献   

13.
Single treatment with the serotonin (5-hydroxytryptamine) 5-HT1A receptor agonists 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and alnespirone (S-20499) reduces the extracellular 5-HT concentration (5-HText) in the rat midbrain and forebrain. Given the therapeutic potential of selective 5-HT1A agonists in the treatment of affective disorders, we have examined the changes in 5-HT1A receptors induced by 2-week minipump administration of alnespirone (0.3 and 3 mg/kg/day) and 8-OH-DPAT (0.1 and 0.3 mg/kg/day). The treatment with alnespirone did not modify baseline 5-HText but significantly attenuated the ability of 0.3 mg/kg s.c. alnespirone to reduce 5-HText in the dorsal raphe nucleus (DRN) and frontal cortex. In contrast, the ability of 8-OH-DPAT (0.025 and 0.1 mg/kg s.c.) to reduce 5-HText in both areas was unchanged by 8-OH-DPAT pretreatment. Autoradiographic analysis revealed a significant reduction of [3H]8-OH-DPAT and [3H]WAY-100635 [3H-labeled N-[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]-N-(2-pyridyl)cyclohexa necarboxamide x 3HCl] binding to somatodendritic 5-HT1A receptors (but not to postsynaptic 5-HT1A receptors) of rats pretreated with alnespirone but not with 8-OH-DPAT. In situ hybridization analysis revealed no change of the density of the mRNA encoding the 5-HT1A receptors in the DRN after either treatment. These data indicate that continuous treatment for 2 weeks with alnespirone, but not with 8-OH-DPAT, causes a functional desensitization of somatodendritic 5-HT1A receptors controlling 5-HT release in the DRN and frontal cortex.  相似文献   

14.
The novel selective 5-HT1A receptor antagonist radioligand [3H]WAY 100635 ([O-methyl-3H]N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2- pyridyl)cyclohexane-carboxamide) was injected i.v. to mice in an attempt to label in vivo central 5-HT1A receptors. Although 5 min after the i.v. injection of [3H]WAY 100635 (4-7.6 muCi per mouse) the amount of tritium found in the whole brain only accounted for 1.5-1.8% of the injected radioactivity, regional differences in 3H accumulation already corresponded to those of 5-HT1A receptor density. Optimal data were obtained 1 h after [3H]WAY 100635 injection as the distribution of 3H in brain was exactly that of 5-HT1A receptor binding sites in mouse brain sections labelled in vitro with [3H]WAY 100635. In particular, high level of labelling was found in the lateral septum, gyrus dentatus and CA1 area of Ammon's horn in the hippocampus, dorsal raphe nucleus and entorhinal cortex. No labelling was found in he substantia nigra, and 3H accumulated in the cerebellum represented only 12-14% of that found in the hippocampus. Pretreatment with various drugs indicated that only 5-HT1A receptor ligands were able to decrease the accumulation of 3H in all the brain areas examined except in the cerebellum. Assuming that only non-specific binding took place in the latter structure, it was possible to calculate the ID50 values of 5-HT1A receptor agonists (8-OH-DPAT (8-hydroxy-2-(di-n-propylamino)tetralin), S 14506 (1-[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphthyl+ ++)piperazine) and S 20499 ((+)-4-[N-(5-methoxy-chroman-3-yl)-N-propylamino]butyl-8- azaspiro-(4,5)-decane-7,9-dione)) and antagonists (spiperone, (-)-tertatolol, (+)-WAY 100135 (N-tert-butyl-3,4-(2-methoxyphenyl)piperazin-1-yl-2-phenyl- propanamide)) as inhibitors of 3H accumulation in the hippocampus of [3H]WAY 100635-injected mice. Comparison of these values with the in vitro affinity of the same ligands for hippocampal 5-HT1A receptors revealed marked variations in the capacity of 5-HT1A receptor agonists and antagonists to reach the brain when injected via the subcutaneous route in mice.  相似文献   

15.
Stimulus control was established in rats using either 8-hydroxy-2-[di-n-propylamino]tetralin (DPAT) (0.2 mg/kg) or yohimbine (3 mg/kg). Tests were then conducted with purported antagonists at 5-hydroxytryptamine1A (5-HT1A) receptors. Drugs studied were NAN-190, [+/-]-pindolol, and [-]-alprenolol. In addition, each drug was characterized in terms of its affinity for 5-HT1A and alpha 2-adrenoceptors by means of radioligand binding techniques. None of the antagonists tested provided complete blockade of the stimulus effects of either DPAT or yohimbine. However, [+/-]-pindolol produced a statistically significant intermediate degree of antagonism of both DPAT and yohimbine. The affinities of DPAT, yohimbine, and NAN-190 for the 5-HT1A and alpha 2-adrenergic receptors, respectively, were sufficiently high to lead to some ambiguity of interpretation of the behavioral data. However, the results with [+/-]-pindolol, which has high affinity for the 5-HT1A receptor (34 nM) and negligible affinity for the alpha 2-adrenoceptor (24,600 nM), indicate that a significant component of yohimbine-induced stimulus control is mediated by the 5-HT1A receptor.  相似文献   

16.
The cAMP responses of (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) and its enantiomers were measured at cloned human 5-HT1D alpha and 5-HT1D beta receptors in transfected C6-glial cells. R(+)-8-OH-DPAT demonstrated potent intrinsic activity (EC50 value: 30 nM) at 5-HT1D alpha receptor sites, its maximal effect being comparable to that of sumatriptan. Racemic 8-OH-DPAT and S(-)-8-OH-DPAT showed similar agonist efficacy but were respectively 2 and 75 times less potent than R(+)-8-)OH-DPAT. This differs from the lack of stereoselectivity of the 8-OH-DPAT enantiomers for 5-HT1A receptors.  相似文献   

17.
The 5-HT1A receptor agonist (-)-(R)-2-[4-[[(3,4-dihydro-2H-1-benzopyran-2-yl)methyl]amino]butyl]-1,2 -benzisothiazol-3(2H)-one1,1-dioxide monohydrochloride (BAY x 3702) was recently shown to have pronounced neuroprotective effects in rat models of cerebral ischemia and traumatic brain injury. In the present study we investigated the neuroprotective effects of BAY x 3702 in primary cultures of hippocampal and cortical neurons. Cell death was induced by 25 nM of the apoptosis inducing agent staurosporine and analyzed 24 h later by release of lactate dehydrogenase, formation of apoptotic bodies and DNA fragmentation. A significant neuroprotection was seen after pretreatment of the affected neurons with 50 pM to 1 microM BAY x 3702. The effects of BAY x 3702 were completely blocked by the selective 5-HT1A receptor antagonist N-(2-(4-(2-methoxyphenyl)-1-piperazinyl)ethyl)-N-(2-pyridinyl) cyclohexanecarboxamide trihydrochloride) (WAY-100635). These results indicate that low concentrations of BAY x 3702 protect cortical as well as hippocampal neurons from apoptotic cell death via a 5-HT1A receptor mediated pathway.  相似文献   

18.
19.
In the dog saphenous vein (DSV), phenylephrine (PE) responses through alpha-1 adrenoceptors receptors are antagonized by both alpha-1 and alpha-2 receptor antagonists. Furthermore, pretreatment with chloroethylclonidine (CEC) eliminates prazosin binding but reduces rauwolscine binding by half (). In new functional experiments, the effects of preincubation with phenoxybenzamine (PBZ), an irreversible alpha adrenoceptor antagonist, on responses to PE and two selective alpha-2 adrenoceptor agonists were evaluated. Also, the ability of prazosin or rauwolscine to prevent irreversible losses of responses to these agonists when coincubated with PBZ was determined. Preincubation in PBZ (10-300 nM) concentration dependently reduced PE Emax and the calculated fraction of residual receptors (q). Preincubation in PBZ (10-300 nM) increased KB values for prazosin (30 and 100 nM) but did not alter the KB value for rauwolscine (50 nM) acting at the residual receptors from control values. Coincubation of PBZ with prazosin partially prevented these PBZ actions (Emax partly restored) on responses to PE, but coincubation of rauwolscine (/=300 nM caused >50% reduction in Emax values of responses but did not alter the EC50 values for either agonist. Coincubation of rauwolscine with PBZ protected responses to alpha-2 agonists against PBZ (1 microM) effects. This study shows that PE initiates contractions at atypical alpha-1 adrenoceptors represented by all sites of PE action. Rauwolscine antagonizes PE actions but does not protect against PBZ inactivation. Typical alpha-2 adrenoceptors are distinguished from the unusual alpha-1 adrenoceptors by their lesser sensitivity to PBZ and their protection by rauwolscine from PBZ.  相似文献   

20.
Serotonergic 5-hydroxytryptamine-1A (5-HT1A) receptors are of interest in the pathophysiology of several neuropsychiatric disorders such as anxiety, depression and schizophrenia. [Carbonyl-11C]WAY-100635 has recently been shown to be suitable for quantitative determination of 5-HT1A receptors in the human brain using PET. For group comparisons of neuroreceptor distribution on a pixel-by-pixel basis, an anatomic standardization technique is required. In the current study, we have built a database of normal 5-HT1A receptor distribution using [carbonyl-11C]WAY-100635 and an anatomic standardization technique. METHOD: A PET examination lasting 63 min was performed on six subjects after intravenous injection of [carbonyl-11C]WAY-100635. The radioactivity of the PET images were integrated in the interval 12-63 min and normalized by the radioactivity of the cerebellum, providing a measure of the binding potential (BP) in each pixel. Each PET image was transformed into a standard brain anatomy using a computerized brain atlas system. From the standardized PET images, the sample mean and the SD of the BP were calculated in each pixel. RESULT: On the anatomically standardized average image, high BP was observed in the cerebral cortices, hippocampus and raphe nucleus, whereas low BP was observed in the basal ganglia and thalamus. This regional distribution is in good agreement with the distribution of 5-HT1A receptors known from in vitro studies. CONCLUSION: The anatomic standardization technique permits building of a database of the normal 5-HT1A receptor distribution in the living human brain. This technique can be applied for group comparisons of neuroreceptor distribution on a pixel-by-pixel basis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号