共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhi‐Qiang Tao Ming Zhang Yu Zhu Tian Cai Zi‐Ling Zhang Hu Liu Bin Bai Dao‐Hang Li 《Fatigue & Fracture of Engineering Materials & Structures》2021,44(1):225-239
A new calculation approach is suggested to the fatigue life evaluation of notched specimens under multiaxial variable amplitude loading. Within this suggested approach, if the computed uniaxial fatigue damage by the pure torsional loading path is larger than that by the axial tension–compression loading path, a shear strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage; otherwise, an axial strain‐based multiaxial fatigue damage parameter is assigned to calculate multiaxial fatigue damage. Furthermore, the presented method employs shear strain‐based and axial strain‐based multiaxial fatigue damage parameters in substitution of equivalent strain amplitude to consider the influence of nonproportional additional hardening. The experimental data of GH4169 superalloy and 7050‐T7451 aluminium alloy notched components are used to illustrate the presented multiaxial fatigue lifetime estimation approach for notched components, and the results reveal that estimations are accurate. 相似文献
2.
H. CHEN D.‐G. SHANG E.‐T. LIU 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(10):782-791
A path‐dependent cycle counting method is proposed by applying the distance formula between two points on the tension‐shear equivalent strain plane for the identified half‐cycles first. The Shang–Wang multiaxial fatigue damage model for an identified half‐cycle and Miner's linear accumulation damage rule are used to calculate cumulative fatigue damage. Therefore, a multiaxial fatigue life prediction procedure is presented to predict conveniently fatigue life under a given tension and torsion random loading time history. The proposed method is evaluated by experimental data from tests on cylindrical thin‐walled tubes specimens of En15R steel subjected to combined tension/torsion random loading, and the prediction results of the proposed method are compared with those of the Wang–Brown method. The results showed that both methods provided satisfactory prediction. 相似文献
3.
Multiaxial low‐cycle fatigue life evaluation under different non‐proportional loading paths 下载免费PDF全文
W. L. Qu E. N. Zhao Q. Zhou Y.‐L. Pi 《Fatigue & Fracture of Engineering Materials & Structures》2018,41(5):1064-1076
This paper presents analytical and experimental investigations for fatigue lives of structures under uniaxial, torsional, multiaxial proportional, and non‐proportional loading conditions. It is known that the rotation of principal stress/strain axes and material additional hardening due to non‐proportionality of cycle loading are the 2 main causes resulting in shorter fatigue lives compared with those under proportional loading. This paper treats these 2 causes as independent factors influencing multiaxial fatigue damage and proposes a new non‐proportional influencing parameter to consider their combined effects on the fatigue lives of structures. A critical plane model for multiaxial fatigue lives prediction is also proposed by using the proposed non‐proportional influencing factor to modify the Fatemi‐Socie model. The comparison between experiment results and theoretical evaluation shows that the proposed model can effectively predict the fatigue life due to multiaxial non‐proportional loading. 相似文献
4.
Multiaxial fatigue life modelling using hybrid approach of critical plane and genetic algorithm 下载免费PDF全文
This paper presents a new hybrid approach for multiaxial fatigue life estimation, based on continuum damage mechanics theory and a genetic algorithm with critical plane model formulation. The hybrid model employs a genetic algorithm based setup for calibration with standard proportional and non‐proportional profiles to predict fatigue life for complex loading profiles. The model is evaluated using experimental fatigue life data for SS304 steel. Calibration using simplified profiles is in agreement with the requirement for cost‐effective experimental fatigue life testing. In‐phase and out‐of‐phase loads are used for calibration, and fatigue life is predicted for more complicated profiles. The results show good agreement between the estimated and experimental fatigue life, and calibration through simple loading histories to predict fatigue life for complex histories appears to be an effective solution using the proposed model. A brief comparison is presented with fatigue life estimation performance of the proposed model with models available in commercial codes. Proposed model found to be more consistent in fatigue life prediction against various loading conditions. 相似文献
5.
6.
A new critical plane‐energy model is proposed in this paper for multiaxial fatigue life prediction of metals. A brief review of existing methods, especially on the critical plane‐based and energy‐based methods, is given first. Special focus is on the Liu–Mahadevan critical plane approach, which has been shown to work for both brittle and ductile metals. One potential drawback of the Liu–Mahadevan model is that it needs an empirical calibration parameter for non‐proportional multiaxial loadings because only the strain terms are used and the out‐of‐phase hardening cannot be explicitly considered. An energy‐based model using the Liu–Mahadevan concept is proposed with the help of the Mróz–Garud plasticity model. Thus, the empirical calibration for non‐proportional loading is not needed because the out‐of‐phase hardening is naturally included in the stress calculation. The model predictions are compared with experimental data from open literature, and the proposed model is shown to work for both proportional and non‐proportional multiaxial loadings without the empirical calibration. 相似文献
7.
S.H. Iftikhar J. Albinmousa 《Fatigue & Fracture of Engineering Materials & Structures》2018,41(1):235-245
Fatigue failure is a complex phenomenon. Therefore, development of a fatigue damage model that considers all associated complexities resulting from the application of different cyclic loading types, geometries, materials, and environmental conditions is a challenging task. Nevertheless, fatigue damage models such as critical plane‐based models are popular because of their capability to estimate life mostly within ±2 and ±3 factors of life for smooth specimens. In this study, a method is proposed for assessing the fatigue life estimation capability of different critical plane‐based models. In this method, a subroutine was developed and used to search for best estimated life regardless of critical plane assumption. Therefore, different fatigue damage models were evaluated at all possible planes to search for the best life. Smith‐Watson‐Topper (normal strain‐based), Fatemi‐Socie (shear strain‐based), and Jahed‐Varvani (total strain energy density‐based) models are compared by using the proposed assessment method. The assessment is done on smooth specimen level by using the experimental multiaxial fatigue data of 3 alloys, namely, AZ31B and AZ61A extruded magnesium alloys and S460N structural steel alloy. Using the proposed assessment method, it was found that the examined models may not be able to reproduce the experimental lives even if they were evaluated at all physical planes. 相似文献
8.
Aleksander Karolczuk Dariusz Skibicki ukasz Pejkowski 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(1):197-208
This paper presents an approach to the evaluation of the Fatemi‐Socie parameter applied to the lifetime calculation of specimens made of CuZn37 brass. In particular, two factors affecting the calculated fatigue lives are analysed: (i) the influence of stresses calculated by applying the Chaboche plasticity model on the computed lifetime and (ii) the influence of a variability of parameter k of material sensitivity to normal stress on the calculated lifetime. The novelty of the presented research is associated with the fatigue life calculation according to the Fatemi‐Socie model with the introduced k dependence accounting for the lifetime. Underestimation of the calculated stresses results in the higher calculated fatigue lives but with acceptable scatter band. The parameter of material sensitivity to normal stress for the CuZn37 brass varies insignificantly having little impact on the calculated fatigue lives. 相似文献
9.
Fbio C. Castro Edgar N. Mamiya Lucival Malcher Felipe A. Canut Guilherme V. Ferreira Raniere S. Neves 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(11):2487-2495
Tension‐compression, tension‐tension, torsional, and 90° out‐of‐phase axial‐torsional fatigue tests were performed on a quenched and tempered U2 steel. All tests were conducted under force/torque control because macroscopic plastic strains were insignificant in the life range of interest (from 104 to 2 × 106 loading cycles). Stress‐based versions of the Fatemi‐Socie critical plane parameter and of the Smith‐Watson‐Topper parameter with a critical plane interpretation were evaluated using the experimental data. The Smith‐Watson‐Topper parameter was not able to correlate the test data. The Fatemi‐Socie method correlated most of the test data within factor‐of‐three boundaries. A modified Crossland invariant‐based parameter made of two interaction rules between the shear stress amplitude and the maximum hydrostatic stress, and of a definition of shear stress amplitude based on the maximum prismatic hull method, yielded fatigue life estimates in reasonable agreement with the experimental observations. 相似文献
10.
Zhengbo Luo Huaihai Chen Ronghui Zheng Wei Zheng 《Fatigue & Fracture of Engineering Materials & Structures》2020,43(9):2101-2115
In the present paper, a damage gradient model combing the damage concept with the theory of critical distance (TCD) is established to estimate the fatigue lives of notched metallic structures under multiaxial random vibrations. Firstly, a kind of notched metallic structure is designed, and the biaxial random vibration fatigue tests of the notched metallic structures are carried out under different correlation coefficients and phase differences between two vibration axes. Then, the fatigue lives of the notched metallic structures are evaluated utilizing the proposed model with the numerical simulations. Finally, the proposed model is validated by the experiment results of the biaxial random vibration fatigue tests. The comparison results demonstrate that the proposed model can provide fatigue life estimation with high accuracy. 相似文献
11.
J. A. ARAÚJO D. NOWELL R. C. VIVACQUA 《Fatigue & Fracture of Engineering Materials & Structures》2004,27(10):967-978
This work describes the application of multiaxial fatigue criteria based on critical plane and mesoscopic (Dang Van, 1973, Sciences et Techniques de lÁrmement, 47 , 647—722) approaches to predict the fatigue initiation life of fretted components. To validate the analysis, several tests under closely controlled laboratory conditions are carried out in a Ti‐6Al‐4V alloy. These classical Hertzian tests reveal a size effect where fretting fatigue lives vary with contact size. Experimentally available data for fretting fatigue of an Al‐4Cu alloy are also used to assess the models. Neither the critical plane models nor the mesoscopic criterion considered can account for the effects of different contact stress fields on the initiation life, if the calculation is based only on highly stressed points on the surface. It is shown, however, that satisfactory results can be achieved if high values of the fatigue parameters are sustained over a critical volume. 相似文献
12.
Strain-based multiaxial fatigue damage modelling 总被引:1,自引:0,他引:1
A new multiaxial fatigue damage model named characteristic plane approach is proposed in this paper, in which the strain components are used to correlate with the fatigue damage. The characteristic plane is defined as a material plane on which the complex three‐dimensional (3D) fatigue problem can be approximated using the plane strain components. Compared with most available critical plane‐based models for multiaxial fatigue problem, the physical basis of the characteristic plane does not rely on the observations of the fatigue crack in the proposed model. The cracking information is not required for multiaxial fatigue analysis, and the proposed model can automatically adapt for different failure modes, such as shear or tensile‐dominated failure. Mean stress effect is also included in the proposed model by a correction factor. The life predictions of the proposed fatigue damage model under constant amplitude loading are compared with a wide range of metal fatigue results in the literature. 相似文献
13.
Tian-Hao Ma Chang-Yu Zhou Le Chang Xiao-Hua He 《Fatigue & Fracture of Engineering Materials & Structures》2023,46(1):341-356
Multiaxial low cycle fatigue tests under non-proportional stress (NPSS) controlled mode were performed on commercial pure titanium (CP-Ti). Strain responses of axial and torsional channels under highly applied stress amplitudes show an initial hardening phenomenon. Non-proportional hardening coefficient of CP-Ti is independent of the controlled mode. The critical plane of CP-Ti under NPSS controlled mode is aligned with the maximum principal stress plane proved by optical microscopy observation. Optimized FSM model and KBM-PM model with mean axial and torsional strain are established. These models are further integrated into equations related to multiaxial stress ratio with high accuracy of life prediction for CP-Ti under NPSS controlled mode. 相似文献
14.
A notch critical plane approach of multiaxial fatigue life prediction for metallic notched specimens
Peng Luo Weixing Yao Piao Li 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(4):854-870
An approach based on the local stress response is proposed to locate the fatigue critical point for metallic blunt notched specimens under multiaxial fatigue loading. According to the stress analysis, both stress gradient and gradient of loading nonproportionality exist at notch root. The plane in the vicinity of the notch that passes through the fatigue critical point and experiences the maximum shear stress amplitude is defined as the critical plane for notch specimens (CPN). Furthermore, the Susmel's fatigue damage parameter is modified to assess fatigue life of notched components by combining CPN and the theory of critical distance (TCD). The multiaxial fatigue test of the thin‐walled round tube specimens made of Ni‐base alloy GH4169 is carried out to verify the above approaches. In addition, test data of two kinds of materials are collected. The results show that the maximum absolute error of the fatigue critical point is 9.6° and the majority of the predicted life falls within the three‐time scatter band. 相似文献
15.
Random fatigue life prediction of carbon fibre-reinforced composite laminate based on hybrid time-frequency domain method 总被引:1,自引:0,他引:1
To evaluate fatigue life of composite laminate with hole under random loading, a random fatigue life prediction model is established by hybrid time-frequency domain method in this paper. Firstly, dynamic response of composite laminate is obtained from FE model in frequency domain. Secondly, root mean square of stress of six stress components of critical damage point in frequency domain are transferred to stresses in time domain. At last, 3D Tsai–Hill static failure criterion is adopted to convert the multiaxial stress into the uniaxial equivalent stress. Fatigue life is predicted by equivalent stress fatigue life code. The method is validated with the random vibration fatigue test of carbon fibre-reinforced composite laminate. Numerical results are compared with random fatigue experiments which show good agreement with numerical results. 相似文献
16.
A critical plane-strain energy density criterion for multiaxial low-cycle fatigue life under non-proportional loading 总被引:2,自引:0,他引:2
X. Chen S. Xu & D. Huang 《Fatigue & Fracture of Engineering Materials & Structures》1999,22(8):679-686
A series of multiaxial low-cycle fatigue experiments was performed on 45 steel under non-proportional loading. The present evaluations of multiaxial low-cycle fatigue life were systematically analysed. A combined energy density and critical plane concept is proposed that considers different failure mechanisms for a shear-type failure and a tensile-type failure, and from which different damage parameters for the critical plane-strain energy density are proposed. For tensile-type failures in material 45 steel and shear-type failures in material 42CrMo steel, the new damage parameters permit a good prediction for multiaxial low-cycle fatigue failure under non-proportional loading. The currently used critical plane models are a special and simple form of the new model. 相似文献
17.
Alejandro S. Cruces Pablo Lopez‐Crespo Stefano Bressan Takamoto Itoh 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(8):1633-1645
In this work, the multiaxial behaviour of 316 stainless steel is studied under the lens of critical plane approach. A series of experiments were developed on dog bone–shaped hollow cylindrical specimens made of type 316 stainless steel. Five different loading conditions were assessed with (a) only tensile axial stress, (b) only hoop stress, (c) combination of axial and hoop stresses with square shape, (d) combination of tensile axial and hoop stresses with L shape, and (e) combination of compressive axial and hoop stresses with L shape. The fatigue analysis is performed with four different critical plane theories, namely, Wang‐Brown, Fatemi‐Socie, Liu I, and Liu II. The efficiency of all four theories is studied in terms of the accuracy of their life predictions and crack failure plane angle. The best fatigue life predictions were obtained with Liu II model, and the best predictions of the failure plane were obtained with Liu I model. 相似文献
18.
In this paper generalized criteria of multiaxial random fatigue based on stress, strain and strain energy density parameters in the critical plane have been discussed. The proposed criteria reduce multiaxial state of stress to the equivalent uniaxial tension–compression or alternating bending. Relations between the coefficients occurring in the considered criteria have been derived. Thus, it is possible to take into account fatigue properties of materials under simple loading states during determination of the multiaxial fatigue life. Presented models have successfully correlated fatigue lives of cast iron GGG40 and steel 18G2A specimens under constant amplitude in‐phase and out‐of‐phase loadings including different frequencies. 相似文献
19.
Matteo Benedetti Ciro Santus 《Fatigue & Fracture of Engineering Materials & Structures》2019,42(6):1228-1246
In the present work, we propose a robust calibration of some bi‐parametric multiaxial fatigue criteria applied in conjunction with the theory of critical distances (TCD). This is based on least‐square fitting fatigue data generated using plain and sharp‐notched specimens tested at two different load ratios and allows for the estimation of the critical distance according to the point and line method formulation of TCD. It is shown that this combination permits to incorporate the mean stress effect into the fatigue strength calculation, which is not accounted for in the classical formulation of TCD based on the range of the maximum principal stress. It is also shown that for those materials exhibiting a low fatigue‐strength‐to‐yield‐stress ratio σfl,R = ?1/σYS, such as 7075‐T6 (σfl,R = ?1/σYS = 0.30), satisfactorily accurate predictions are obtained assuming a linear‐elastic stress distribution, even at the tip of sharp notches and cracks. Conversely, for any materials characterized by higher values of this ratio, as quenched and tempered 42CrMo4 (σfl,R = ?1/σYS = 0.54), it is recommended to consider the stabilized elastic‐plastic stress/strain distribution, also for plain and blunt‐notched samples and even in the high cycle fatigue regime still with the application of the TCD. 相似文献
20.
J. LI Z. ZHANG Q. SUN C. LI 《Fatigue & Fracture of Engineering Materials & Structures》2011,34(4):280-290
This paper proposed a simple life prediction model for assessing fatigue lives of metallic materials subjected to multiaxial low‐cycle fatigue (LCF) loading. This proposed model consists of the maximum shear strain range, the normal strain range and the maximum normal stress on the maximum shear strain range plane. Additional cyclic hardening developed during non‐proportional loading is included in the normal stress and strain terms. A computer‐based procedure for multiaxial fatigue life prediction incorporating critical plane damage parameters is presented as well. The accuracy and reliability of the proposed model are systematically checked by using about 300 test data through testing nine kinds of material under both zero and non‐zero mean stress multiaxial loading paths. 相似文献