首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
综合利用环境星CCD和红外数据反演大气气溶胶光学厚度   总被引:2,自引:0,他引:2  
采用遥感技术监测大气气溶胶可实现整个研究区域的全覆盖,对区域生态环境的研究具有十分重要的意义.环境与灾害监测预报小卫星于2008年9月6日成功发射,是我国第一个专门用于环境与灾害监测预报的小卫星星座,较目前常用于反演大气气溶胶光学厚度(AOD)的遥感数据源具有一定时间分辨率和空间分辨率的优势.为了促进环境星在陆地气溶胶监测领域的应用,提出一种综合利用环境星同台获取的CCD和红外(1.6 μm)数据反演AOD的方法,该方法利用CCD近红外波段和AFRI植被指数提取非阴影区域浓密植被为暗目标像元、通过6S模型模拟来构建查找表、基于暗目标像元红和蓝波段地表反射率具有较好的线性关系这一原理反演AOD.反演结果误差分析表明该方法比较稳定和可靠,反演结果合理.  相似文献   

2.
基于6S模型从MODIS图像反演陆地上空大气气溶胶光学厚度   总被引:16,自引:0,他引:16  
本文描述了一种以MODIS图像反演陆地大气气溶胶光学厚度的算法,它是基于6S大气辐射传输模型计算的查找表(LUT),并利用地面的暗目标自动反演陆地大气气溶胶光学厚度的方法。利用该算法给出了我国江西省中部地区的2001年10月19日550nm波长的平均大气气溶胶光学厚度(0.19),这与从国家气象档案馆获得的该地区的气象能见度计算结果有较好的一致性。  相似文献   

3.
提出了基于中分辨率成像光谱仪(MODIS)数据反演近海污染大气气溶胶光学性质的算法.根据近海污染大气气溶胶的成分特征构建了新的气溶胶模式;同时避开了MODIS反演算法中计算大气顶光谱反射率理论的缺陷;利用近红外光谱数据降低了近岸二类水体离水辐射的影响,并通过光谱匹配技术实现了近海污染大气气溶胶光学性质的反演.利用气溶胶...  相似文献   

4.
400-1000nm波段反演气溶胶光学厚度的暗像元法   总被引:3,自引:0,他引:3       下载免费PDF全文
从卫星遥感的角度来看,气溶胶的不确定性是可见一近红外遥感中大气校正的难点,从遥感数据本身来反演气溶胶参数,进而完成大气校正,一直是遥感研究的重点.针对可见一近红外波段大气辐射传输特点,提出了利用浓密植被红波段(660 nm)与近红外波段(830 nm)之间的线性关系反演气溶胶光学厚度的基于可见近红外波段的暗像元法,该方法主要思想是首先假设在清洁大气的条件下,利用MODTRAN辐射传输模型对遥感图像进行大气校正,以减少近红外波段大气的影响,再通过双层叠代法搜索浓密植被像元作为暗像元,根据红波段和近红外波段之间的线性关系通过近红外波段计算暗像元的红波段表观反射率,并反演气溶胶光学厚度.利用该方法对PHI航空高光谱图像进行了气溶胶光学厚度的反演,并给出了反演原理、步骤和误差分析.  相似文献   

5.
针对高反射率地区地表反射率难以确定的难点,假设在不同年间同一天相同地物的两个不同波段的比值近似相等的前提下,借助几何光学模型理论,应用MODIS历史产品和数据,即MODIS地表反射率产品(MOD09)、历史MODIS图像第七波段的地表反射率和待反演地区的MODIS第七波段的地表反射率数据计算出待反演地区的MODIS其他波段的地表反射率,然后结合利用6S辐射传输模式计算建立的查找表,可实现待反演区域的气溶胶光学厚度的反演.以北京市区为例,应用该方法实现了北京市区的气溶胶光学厚度反演,并把反演结果与AERONET观测站的结果进行了对比,对比发现该反演方法对亮区域有效,其误差在30%以内.  相似文献   

6.
激光雷达测量大气气溶胶光学厚度方法研究   总被引:7,自引:2,他引:5  
介绍一种激光雷达常数标定和气溶胶光学厚度(AOD)测量的新方法.利用太阳辐射计,获得大气气溶胶的光学厚度,激光雷达可以获得35~40 km高度的回波信号,在这一高度区间可忽略气溶胶的存在,大气模式可以提供大气分子散射系数,根据激光雷达方程计算出激光雷达常数.反之,标定激光雷达常数后,根据激光雷达方程,以激光雷达35~40 km的大气分子后向散射回波信号来确定气溶胶的光学厚度.激光雷达测量结果与太阳辐射计的测量结果一致性较好,说明该方法是可行的.这种新方法既可以用于白天的气溶胶光学厚度测量,也可以用于夜间测量.  相似文献   

7.
微脉冲激光雷达是探测气溶胶的有效工具。为了验证探测的准确度,对一台微脉冲激光雷达观测数据采用Fernald算法进行反演,得到了南京北郊上空的气溶胶光学厚度,并将反演结果同太阳光度计观测数据、喇曼-瑞利-米雷达观测数据和中分辨率成像光谱仪的标准气溶胶产品进行了比较。结果表明,它们之间具有一定相关性。微脉冲激光雷达是反演气溶胶光学厚度的有效手段,可以用于其它观测手段的地面验证。  相似文献   

8.
卫星偏振测量是气溶胶遥感的一种重要手段.气溶胶模型的准确性是影响卫星遥感气溶胶参数精度的关键因素之一.在卫星反演气溶胶算法中,若忽略气溶胶粗模态贡献(星载偏振传感器气溶胶反演的一种常用假设)或选错气溶胶类型,均会带来反演结果的误差.基于六种典型的气溶胶类型(沙尘型、生物质燃烧型、乡村背景型、污染大陆型、污染海洋型和重污染型)模型,模拟研究了气溶胶模态和类型选择对卫星近红外偏振通道反演气溶胶光学厚度(AOD)的影响.利用矢量的辐射传输模式,模拟分析了六种气溶胶类型在865 nm波长的大气偏振反射分布函数(BPDF);发现大气BPDF与气溶胶粒子尺度密切相关,粗模态对大气BPDF的贡献远小于细模态;粗、细模态同时存在时,大气BPDF反而小于仅细模态时的BPDF.在此基础上,分析了"忽略粗模态贡献"和"选择错误气溶胶类型"两种情况下AOD的反演误差,得到如下结论:(1)忽略气溶胶粗模态贡献,会导致反演的细模态气溶胶光学厚度(AOD_f)偏小.六种典型气溶胶类型模型情况下,AOD_f反演结果可偏低12.3%~35.7%,其中沙尘型气溶胶时AOD_f反演误差最大,污染大陆型气溶胶时AOD_f反演误差最小.(2)若气溶胶类型选择错误,反演的AOD可能偏大或偏小,取决于与气溶胶类型对应的大气BPDF的差别.测试的六种气溶胶类型中,沙尘型与重污染型的大气BPDF差别最大,二者互换(即"选择错误")时,AOD反演误差最大,分别可达220.3%或-60.6%;乡村背景型与污染大陆型的大气BPDF差别最小,两者互换时,AOD反演误差最小,分别为7.1%和-3.0%.研究结果对于发展新一代星载偏振传感器及其气溶胶反演算法研究具有参考价值.  相似文献   

9.
目前MODIS海洋气溶胶反演算法能够很好地给出远海气溶胶性质,但近海结果并不理想。这是因为近海浑浊水体对0.55 µm、0.646 µm波段不能视为暗目标,对于0.86 µm波段也并不是总能视为暗目标。本研究采用MODIS近红外陆地通道对中国东南近海浑浊水体上空的气溶胶进行了反演研究,结果与AEROET符合得较好,这种算法可以很容易的与现行算法相结合,从而能够获得更多宝贵的气溶胶数据。  相似文献   

10.
一种MODIS遥感图像大气校正的快速算法   总被引:1,自引:0,他引:1  
李玮  康晓光  陈雷 《信号处理》2007,23(5):751-754
本文设计了基于大气辐射传输模型对MODIS遥感图像进行大气校正的一种新的快速算法。根据Kaufman气溶胶光学厚度反演方法的基本原理,建立了简化的气溶胶光学厚度反演模型,通过6S模型获取气溶胶光学厚度参数,利用经验公式计算大气反射率及大气透过率等参数,实现了MODIS遥感图像的快速大气校正。  相似文献   

11.
嵌入式定位系统的实用设计与软件算法实现   总被引:1,自引:0,他引:1  
提出一种嵌入式的定位系统设计,在S3C2410的基础上运用MiniGUI实现图形界面的通用化.在简要说明硬件选型基础上,详细介绍嵌入式系统的移植和算法的实现.运用该系统可便捷地开发有关定位及图显的综合设备,缩短产品的开发周期.该系统可广泛运用于移动式裳备,在交通、医疗、电信、勘探等领域具有广泛的应用前景.  相似文献   

12.
用MFRSR仪器观测气溶胶光学厚度   总被引:2,自引:0,他引:2  
气溶胶对激光大气传输有着重要的影响。MFRSR(多光谱旋转遮蔽影带辐射计)是一种用于地基辐射和气溶胶测量的仪器。该仪器使用自动旋转影带技术同时在七个波段交替进行总的水平辐射和漫射水平辐射测量,然后推算得出直接辐射。其中6个波段的中心波长分别是414.3nm,495.3nm,613.7nm,671.5nm,867.6nm,939.3nm,还有一个硅探测器进行宽波段太阳总辐射测量。本文首先介绍了MFRSR仪器及其定标和资料处理方法,然后利用香河观测站2004-2005年MFRSR观测资料,分析了气溶胶的统计特性。为了说明利用MFRSR观测气溶胶光学厚度的可靠性,我们将MFRSR与AERONET的观测结果进行了比较,结果表明二者在500nm、670nm和870nm三个波段的平均偏差分别为-0.021,-0.009,-0.004;标准差分别为0.067,0.051,0.050。文中还对造成二者偏差的原因进行了讨论。  相似文献   

13.
针对多角度偏振成像仪(Directional Polarimetric Camera,DPC)数据,提出了基于多角度多光谱偏振信息的气溶胶光学厚度反演方法。该方法使用Nadal-Breon半经验模型计算地表偏振反射率,以扣除地表影响;采用倍加累加法矢量辐射传输模型构建气溶胶参数查找表,通过计算最小残差,动态确定最优气溶胶模型,从而实现陆地上空气溶胶光学厚度的反演。使用DPC的L1级条带数据,反演获得了中国东部地区气溶胶光学厚度的空间分布,并与MODIS产品和AERONET地基站点数据分别进行了对比,反演结果与MODIS气溶胶产品的整体分布具有很好的一致性;同时,与AERONET地基站点观测结果具有较高的相关性,670 nm和865 nm两个波段的相关系数都在0.8以上,说明该算法模型反演陆地上空的气溶胶光学厚度准确可靠,可为DPC遥感大气气溶胶提供技术支持。  相似文献   

14.
利用大气能见度获取多波长气溶胶光学特性   总被引:6,自引:2,他引:6       下载免费PDF全文
介绍了一种利用测量得到的大气能见度获取多波长气溶胶光学特性(主要探讨气溶胶的消光系数、散射系数和吸收系数)的新方法。首先,由能见度求出波长0.55 μm的大气消光系数,在减去大气分子的消光系数后得到0.55 μm气溶胶的消光系数,使用Mie散射理论求出气溶胶粒子的数密度;因为同一时间大气状态下气溶胶的数密度是不变的,所以再次使用Mie散射理论即可得到其他波长下气溶胶的光学特性。以1.06、1.536、3.75 μm为例,给出了合肥2003年近地面层的气溶胶光学特性,该方法对于研究大气环境和大气中光传输模式具有重要意义。  相似文献   

15.
气溶胶光吸收特性是影响气溶胶大气辐射强迫的重要因素,光声光谱技术被认为是测量气溶胶光吸收特性的理想方法之一。利用扫描电迁移率粒径谱仪和自行设计的气溶胶吸收光声光谱仪对合肥郊区大气气溶胶的粒径分布和吸收系数进行了连续测量,获得了某一时段大气气溶胶粒径谱和吸收系数的变化趋势,分析发现大气气溶胶的吸收系数与其数浓度和粒径分布存在较好的正相关性,且碳质气溶胶的排放是影响该地区大气气溶胶光吸收特性的主要原因。  相似文献   

16.
为丰富整层大气气溶胶光学厚度测量手段,提出了一种综合微脉冲激光雷达与地面能见度测量数据的探测方法。该方法首先利用激光雷达数据反演得到气溶胶垂直消光系数廓线,据此计算出气溶胶标高;再利用能见度和消光系数的关系得到近地面水平方向的消光系数;最后,将近地面消光系数和标高结合,从而得到整层大气气溶胶光学厚度。将该方法应用于合肥地区,成功得到该地区整层大气气溶胶光学厚度的昼夜变化趋势,验证了该方法的可适应性。  相似文献   

17.
利用CE318太阳辐射计测量了西北戈壁地区的气溶胶光学厚度(AOD),并给出了该地区典型的晴朗和沙尘天气条件下气溶胶光学厚度的变化,以670 nm的气溶胶光学厚度值为例,AOD平均值分别为0.2和0.47,给出了相应大气条件下波长指数和大气混浊度因子的变化,并进行简要分析.计算了光学厚度的逐月变化量,最后得出了西北戈壁地区气溶胶光学特性的初步结论.  相似文献   

18.
王元祖  孙东松  韩於利  郑俊  赵一鸣 《红外与激光工程》2023,52(1):20220262-1-20220262-13
气溶胶对全球生态系统、物质循环具有重要影响,研究气溶胶光学参量等基础数据反演的准确性意义重大。利用来自欧洲气溶胶研究激光雷达网的4个观测站点(波坦察、莱比锡、里尔、埃武拉)在两次集中观测任务中的数据,对使用不同大气模式的温度、压强数据在反演气溶胶光学参量(消光和后向散射系数)及气溶胶分类中所产生的影响进行研究。结果表明:选用不同的大气模式对气溶胶光学参量进行反演会导致计算结果出现偏差,其中对于Raman法获取气溶胶消光系数的影响较大,在355 nm和532 nm处的最大偏差均可达到~20%。大气气溶胶浓度也会对不同模式的气溶胶光学参量反演结果产生影响,并且随观测波长的不同而有所差异。此外,不同大气模式会使气溶胶激光雷达比以及?ngstr?m指数等与气溶胶类型相关的参量反演结果产生偏差,并最终影响气溶胶的分类。文中研究结果对于揭示大气模式的选取在反演气溶胶光学参量中的重要性以及对于气溶胶分类乃至大气科学的相关研究都具有重要的参考价值。  相似文献   

19.
介绍了基于LabVIEW编程语言开发的米散射大气激光雷达数据采集与可视化软件。设计中利用LabVIEW调用光子计数卡(MSA300)的动态链接库,实现了激光雷达软件对大气回波数据的实时采集与显示,根据Fernald方法即时处理回波信号并显示消光系数与回波强度时间高度显示图(THI)。软件采集的数据直接转换并保存为ASCII码文本格式,便于数据的后期处理与分析。初步实验效果表明,软件能够对大气回波信号、消光系数与THI图进行实时可视化显示,便于直观了解大气激光雷达连续探测的大气气溶胶和云时空变化信息。实验表明,软件具有良好的实时性与准确性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号