首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
Jeon BH  Dempsey BA  Burgos WD  Royer RA 《Water research》2003,37(17):4135-4142
The reactions of Fe(II) and other divalent metal ions including Zn, Co, Ni, and Cd on hematite were studied in single and competitive binary systems with high sorbate/sorbent ratios in 10 mM PIPES (pH 6.8) solution under strict anoxic conditions. Adsorbed Me(II) was defined as extractable by 0.5 N HCl within 20 h, and fixed Me(II) was defined as the additional amount that was extracted by 3.0 N HCl within 7 days. Binary systems contained Fe(II) plus a second metal ion. The extent of uptake of divalent metal ions by hematite was in order of Fe> or =Zn>Co> or =Ni>Cd. For all metals tested, there was an instantaneous adsorption followed by a relatively slow stage that continued for the next 1-5 days. This sequence occurred in both single and binary systems, and could have been due to a variety of sorption site types or due to slow conversion from outer- to inner-sphere surface complexes due to increasing surface charge. Sorption competition was observed between Fe(II) and the other metal ions. The displacement of Fe(II) by Me(II) was in order of Ni approximately Zn>Cd, and the displacement of Me(II) by Fe(II) was in order of Cd>Zn approximately Ni>Co. Fixed Fe(II) was in order of Fe+Co (20%)>Fe+Cd (6%)>Fe approximately Zn (4%)>Fe approximately Ni (4%) after 30 days. There was no fixation for the other metals in single or binary systems.  相似文献   

2.
We have studied the possibility of using zinc–aluminum layered double hydroxide intercalated hexacyanoferrate (II)-ions for sorption removal of Cu(II), Co(II) and Pb(II) from aqueous solutions. The article showed high efficiency of a sorbent for removal from aqueous solutions of Cu(II) and P(II). It was found that a model of kinetics of the pseudosecond order the most precisely describes the sorption process of studied ions of heavy metals (R 2 > 0.99).  相似文献   

3.
The article has investigated the possibility of using layered double hydroxide intercalated by diethylenetriaminepentaactetic acid for the removal of toxic metals from aqueous solutions. It has been shown that sorption of Ni(II), Co(II), and Pb(II) from aqueous solutions on the indicated sorbent is determined by several mechanisms of sorption: complexation, ionic exchange and precipitation of metal hydroxides. Comparative research of the efficiency of removing toxic metals by carbonate and chelate forms of sorbents was conducted.  相似文献   

4.
A sample of a layered double hydroxide intercalated by EDTA has been synthesized and its chemical formula [Zn4Al2(OH)12](EDTA) · 8H2O was determined. The possibility of applying such sorbent for the extraction of Cu(II), Ni(II), and Co(II) from aqueous solutions was investigated. Comparative investigation of the sorption capacity of carbonate and chelate forms of layered double hydroxides was performed. It is shown that the degree of extraction of metals on sorbent [Zn4Al2(OH)12](EDTA) · 8H2O completely correlates with the stability of complex compounds of these metals in the solution.  相似文献   

5.
In this research, the possibility of simultaneous removal of lead, cadmium and copper divalent ions from water samples through the use of Sepia pharaonis endoskeleton powder (SPEB) as bio‐material, was investigated. The bio‐sorbent was characterised by Fourier transform infrared spectrum (FT‐IR), atomic force microscopy (AFM) and X‐ray fluorescence (XRF). The different factors affecting the bio‐sorption process were studied. Langmuir and Freundlich isotherm models were applied to analyse the experimental data. The kinetic studies showed that the pseudo‐second order model kinetics were compatible with the investigated systems. It was found that under optimal conditions, this bio‐sorbent was efficient in the uptake of these heavy metal ions from both mono and multi‐metal solutions, and high removal percentages were achieved. This study verified the potential ability of SPEB as an efficient natural adsorbent for removal of Pb(II), Cd(II) and Cu(II) ions from river, tap and mineral water samples.  相似文献   

6.
Clays (especially montmorillonite and bentonite) are widely used as barriers in landfills to prevent contamination of subsoil and groundwater by leachates containing heavy metals. For this reason it is important to study the adsorption of metals by these clays. The sorption of seven metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) on Na-montmorillonite was studied as a function of pH and in the presence of ligands, forming complexes of different stabilities with the metals of interest. The continuous column method was used as it better simulates natural conditions. The total capacity of Na-montmorillonite towards these metals was determined. The pH variations influence to a higher extent the concentrations of Cu, Pb and Cd in the effluent. Moreover the results suggest that complex formation hinders the sorption of the metals on the clay, with an increasing influence in the order: Mn < or = Pb < or = Cd < or = Zn < Ni < Cu < Cr. The evaluation of the total capacity of Na-montmorillonite shows that this clay is a good sorbent towards all examined metals.  相似文献   

7.
The present study developed a polymer-based hybrid sorbent (HFO-001) for highly efficient removal of heavy metals [e.g., Pb(II), Cd(II), and Cu(II)] by irreversibly impregnating hydrated Fe(III) oxide (HFO) nanoparticles within a cation-exchange resin D-001 (R-SO3Na), and revealed the underlying mechanism based on X-ray photoelectron spectroscopy (XPS) study. HFO-001 combines the excellent handling, flow characteristics, and attrition resistance of conventional cation-exchange resins with the specific affinity of HFOs toward heavy metal cations. As compared to D-001, sorption selectivity of HFO-001 toward Pb(II), Cu(II), and Cd(II) was greatly improved from the Ca(II) competition at greater concentration. Column sorption results indicated that the working capacity of HFO-001 was about 4-6 times more than D-001 with respect to removal of three heavy metals from simulated electroplating water (pH ∼4.0). Also, HFO-001 is particularly effective in removing trace Pb(II) and Cd(II) from simulated natural waters to meet the drinking water standard, with treatment volume orders of magnitude higher than D-001. The superior performance of HFO-001 was attributed to the Donnan membrane effect exerted by the host D-001 as well as to the impregnated HFO nanoparticles of specific interaction toward heavy metal cations, as further confirmed by XPS study on lead sorption. More attractively, the exhausted HFO-001 beads can be effectively regenerated by HCl-NaCl solution (pH 3) for repeated use without any significant capacity loss.  相似文献   

8.
We have investigated the use of montmorillonite modified with polyethylenimine for the removal of ions of heavy metals from aqueous solutions. It has been found that such composite sorbent is rather promising for purifying wastewaters with pH > 3. The adsorption capacity of modified montmorillonite with respect to ions of ferrous iron ascends in the series: Cu(II) > Pb(II) > Ni(II) ≥ Zn(II) > Co(II) ≥ Cd(II).  相似文献   

9.
Sorption of heavy metals by Lithuanian glauconite   总被引:1,自引:0,他引:1  
  相似文献   

10.
内蒙古新巴尔虎右旗查干布拉根银铅锌矿是20世纪90年代发现的大型浅成低温热液矿床,为查明查干布拉根银铅锌矿床44~100线蚀变矿物分布特征及矿物组合分带模式。采用手持式全光谱范围近红外矿物分析仪短波红外光谱测量,结合野外钻孔岩心编录进行蚀变矿物填图工作,有效识别出伊利石、白云母、绿泥石、蒙脱石、绿帘石、高岭石、方解石、白云石、铁白云石、锰白云石、菱铁矿、菱锰矿12种矿物。总结分析了主要蚀变矿物的分布规律,划分出绢英岩化带、泥化带、青磐岩化带、地表氧化带4种蚀变分带模式。建立了44~84线石英闪长岩斑岩+石英斑岩-伊利石+铁锰白云石+萤石以及84线以西砂质板岩-铁绿泥石+方解石与高品位矿化的找矿标志。  相似文献   

11.
The sorption kinetics of the divalent metals Zn, Co, Ni, and Cd to hematite were studied in single sorbate systems with high sorbate/sorbent ratios (from 1.67 to 3.33mol sorbate/mol sorption sites) in 10mM Na-piperazine N,N'-bis 2-ethane sulfonic acid (Na-PIPES) solution at pH 6.8. The experimental data showed a rapid initial sorption (half-time about 1min) followed by slower sorption that continued for 1-5 days. The sequence of fast to slow sorption kinetics was modeled by slow inner-sphere (IS) complexation in equilibrium with outer-sphere (OS) complexes. Although the OS reaction was fast and considered to be in equilibrium, the extent of OS complexation changed over time due to increased surface potential from the IS complexes. For example, the model showed that the dimensionless OS complexation function, K(os), decreased from 0.014 initially to 0.0016 at steady state due to sorption of 4x10(-5)M Zn(II) to 2gL(-1) hematite. Sorption rate constants, k(ads), for the various divalent metals ranged from 6.1 to 82.5M(-1)s(-1). Desorption rate constants, k(des), ranged from 5.2x10(-7) to 6.7x10(-5)s(-1). This study suggests that the conversion from OS to IS complex was the rate-determining step for the sorption of divalent metals on crystalline adsorbents.  相似文献   

12.
The total contents and the chemical and mineralogical forms of the metals Fe, Al, Cu, Co, Cr, Pb, Zn, Ni and Mn in the horizons of a soil profile, representative of an area devoted to stocking raw materials in the dismantled iron-steel industrial plant of ILVA of Bagnoli (Naples), were studied by physical and chemical methods. The geological setting of the study area is the result of volcanic activity in the Phlegrean Fields, a group of polygenic volcanoes to the west of Naples, which give rise to the parent soil material. Soil morphology appeared to be strongly disturbed by the occurrence and stratification of materials used in the industrial process. Fine sediments illuviation down the profile resulted in the occurrence of silt and clay coatings. The total contents of Cu, Co, Cr, Pb, Zn and Ni, in the whole soil samples, especially in the surface layers, were above the regulatory levels (Cu 120, Co 20, Cr 150, Pb 100, Zn 150, Ni 120 mg kg(-1)) stated by the Italian Ministry of Environment for soils in public, private and residential areas, and below the levels (Cu 600, Co 250, Cr 800, Pb 1000, Zn 1500, Ni 500 mg kg(-1)) outlined for soils and subsoils of industrial and commercial areas (Gazzetta Ufficiale della Repubblica Italiana, 1999). Speciation of heavy metals and the determination of the different chemical pools in the fraction < 2 mm identified the large presence of elements trapped in the mineralogical structure of oxides and silicates and occluded in easily reducible manganese or iron oxides. A constant amount of Cu was associated with organic compounds. A significant amount of Zn (> 20%) was extracted in diluted acetic acid solution, indicating that the element was present in a more readily and potentially available form. In the clay fraction (< 2 microm) heavy metals were associated with both amorphous and crystalline iron forms. The presence of iron-rich clay coatings was evident in the illuvial pores of deeper horizons. Enrichment in Cu, Co, Cr and Zn of the coatings was observed. Possible translocation of metals down through the soil profile mainly bound to fine particles of relatively inert forms of iron is hypothesised. The dispersion in water of the clay fraction resulted in an average percentage dispersion of approximately 20% with a peak of 41.7% at 68-72 cm depth. Magnetite, goethite, hematite, calcite and quartz mixed with K-feldspars, clynopyroxenes and mica occurred in the coarse sand fractions (2-0.2 mm) of the soil samples from all the surface horizons. Talcum and goethite together with clay minerals at 1.4 nm, kaolinite and illite were found in the clays (< 2 microm).  相似文献   

13.
Heavy metal-contaminated soil and wastewater have been attracting an increasing amount of attention due to the potential threat to the surrounding environment and human health. Thus, in this study, citric acid (CA) and citric acid-containing wastewater (CACW) were selected for an evaluation of the influence of the contamination level of the soil, the concentration of citric acid, the contact time, the soil pH, and the ionic interaction on the desorption characteristics of three heavy metals (i.e., Cr(III), Mn(II), and Ni(II)). According to the experimental results, a high concentration of citric acid, an acidic condition, a low level of contamination, and a lengthy contact time were found to be beneficial for desorbing the heavy metals from the contaminated soil. Based on the experimental and calculated results, the H+ ions and organic ligands made substantial contributions to the release and adsorption of the heavy metals. The metal ions on the low selectivity sorption sites were leached out earlier than those on the high selectivity sorption sites. The removal percentages of Cr(III), Mn(II), and Ni(II) using CA with a contact time of 6?h were 39.9%, 77.0%, and 62.8%, respectively. By using the CACW as a desorbent, the removal percentages of Cr(III), Mn(II), and Ni(II) with a contact time of 6?h reached 21.4%, 26.9%, and 63.4%, respectively. This suggests a promising practical application of CACW for removing heavy metals from contaminated soil.  相似文献   

14.
Conversion of agricultural wastes into a carbon rich material (i.e. biochar) using pyrolysis process could be an appropriate approach for their management. This study was carried out to convert barley straw to biochar in different temperatures (300, 400 and 500°C) and to investigate the potential of the produced biochar as a sorbent of heavy metals (Pb and Cd). Considering the pretest results of Pb and Cd sorption, the biochar produced at 500°C (BS500) was selected to find effect of pH, the sorbent dose, the initial concentration of Pb and Cd and the contact time on metal removal efficiency. The results showed that the optimum conditions of adsorption were pH = 6, the sorbent dose 1 g/L and the contact time of 45 min. The adsorption kinetics and isotherms had the best fit to the pseudo‐second order and Langmuir models, respectively.  相似文献   

15.
The decontamination of synthetic Pb(II), Zn(II), Cd(II), Ni(II) solutions was investigated, using silica gels chemically modified with poly(ethyleneimine) (PEI) as sorbents. Two families of sorbents, i.e. silica/PEI and crosslinked silica/PEI, were prepared and characterized. Then the removal of metal ions from synthetic aqueous solutions was studied by static tests. They revealed that the sorption capacities depend on the pH, the initial concentration and to some extent on the nature of the metal. The recovery of the metal cations from the saturated sorbents was possible with diluted acid, only for the crosslinked supports. In this case, the regeneration and reuse without sorption decrease, was demonstrated. The presence of other cations (as Na(+), Ca(2+)) and metals does not affect the sorption capacities.  相似文献   

16.
The possibility of using magnetic sorbents for the removal of Co(II), Ni(II) and Cd(II) from water media is shown. It was established that magnetite is more effective compared with magnetic potassium–zinc hexacyanoferrate(II). The pH (> 4) and the dose of sorbents were defined for obtaining maximum possible degree of removing ions of specified metals from water media.  相似文献   

17.
Horsfall M  Abia AA 《Water research》2003,37(20):4913-4923
The sorption of two divalent metal ions, Cd(II) and Zn(II), onto untreated and differentially acid-treated cassava waste biomass over a wide range of reaction conditions was studied at 30°C. The metal ion removal from the spent biomass was also measured. The batch experiments show that pH 4.5–5.5 was the best range for the sorption of the metal ions for untreated and acid-treated biomass. Time-dependent experiments for the metal ions showed that for the two metals examined, binding to the cassava waste biomass was rapid and occurred within 30 min and completed within 1 h. High sorption capacities were observed for the two metals. The binding capacity experiments revealed the following amounts of metal ions bound per gram of biomass: 86.68 mg/g Cd, 55.82 mg/g Zn and 647.48 mg/g Cd, 559.74 mg/g Zn for untreated and acid-treated biomass, respectively. It was further found that the rate of sorption was particle-diffusion controlled, and the sorption rate coefficients were determined to be 2.30×10−1 min−1 (Cd2+), 4.0×10−3 min−1 (Zn2+) and 1.09×10−1 min−1 (Cd2+), 3.67×10−2 min−1 (Zn2+) for 0.5 and 1.00 M differential acid treatment, respectively. Desorption studies showed that acid treatment inhibited effective recovery of metal ions already bound to the biomass as a result of stronger sulfhydryl-metal bonds formed. Less than 25% of both metals were desorbed as concentration of acid treating reagent increases. However, over 60% Cd and 40% Zn were recovered from untreated biomass during the desorption study. The results from these studies indicated that both untreated and acid-treated cassava waste biomass could be employed in the removal of toxic and valuable metals from industrial effluents.  相似文献   

18.
The paper presents results of investigations aimed at optimizing the process of Pb(II) and Cd(II) removal using polyhexamethylene guanidine (PHMG) from aqueous solutions. The formation of compounds of chemisorption-type ions of the above metals with PHMG was established by using the methods of polarography, infrared spectroscopy, and pH-metry. The investigations revealed a positive impact of PHMG on the sedimentation and filtering of the precipitation of Pb(II) and Cd(II) hydroxides.  相似文献   

19.
Frank Wisotzky 《Grundwasser》1996,1(3-4):129-136
The changes in the chemical composition of water and solid phases in pyrite oxidation zones and in lignite mining dump aquifers are described and modelled. At pH-values below pH 4, sulfate and ferrous iron as pyrite oxidation products, are mobile. They are observed in a stoichiometric ratio of 1 to 2 in the aqueous phase. If pyrite oxidation takes place with no pH-buffering with the solid phases, pH-values below 1 are possible. This leads to more intensive silicate weathering which increases the pH-value of the solution to pH 2–3. However, equilibrium with silicates is not reached. At pH-values above pH 4, the iron concentration of water under oxidized conditions is limited by the precipitation of ferric hydroxide. This has an impact on sulfide oxidation itself, because ferric iron is involved in the oxidation reactions of pyrite. Products of sulfide oxidation stored in acidic material in overburden are leached by seepage water and ground water filling the dumps. Reaction with carbonate phases in non-acidic material mainly takes place during ground water recharge. The geogenic calcite minerals of the non-acidic sediments are dissolved. Gypsum and iron-rich carbonates precipitate as secondary minerals in the dump aquifer. The pH-value increases and the concentration of iron and trace metals (Co, Ni, Zn) in the ground water are controlled by equilibrium with iron-rich carbonates at pH-values above pH 5.  相似文献   

20.
The reduction of the metal content of waste water by chemical treatment with aluminium sulfate or calcium hydroxide has been studied. p] Pb(II), Cu(II), Cr(III), Hg(II), Cd(II) and As(V) are reduced to low levels by both precipitants. Zn(II), Ni(II) and Co(II) are precipitated only at pH-values ≤ 9·5. The precipitation of Cu(II) and Pb(II) is greatly inhibited by the presence of nitrilotriacetate at pH ≤9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号