首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanopowders of Ni and Al2O3 were synthesized from 3NiO and 2Al powders by high energy ball milling. Nanocrystalline Al2O3 reinforced composite was consolidated by high frequency induction heated sintering method within 2 min from mechanically synthesized powders of Al2O3 and 3Ni. The relative density of the composite was 96%. The average hardness and fracture toughness values obtained were 645 kg/mm2 and 6.3 MPa m1/2, respectively.  相似文献   

2.
In this study, the formation and characterisation of Aluminium (Al)-based composites by mechanical alloying and hot extrusion were investigated. Initially, the vanadium trialuminide (Al3V) particles with nanosized structure were successfully produced by mechanical alloying and heat treatment. Al3V–Al2O3 reinforcement was synthesised by mechanochemical reduction during milling of V2O5 and Al powder mixture. In order to produce composite powders, reinforcement powders were added to pure Al powders and milled for 5?h. The composite powders were consolidated in an extrusion process. The results showed that nanostructured Al-10?wt-% Al3V and Al-10?wt-% (Al3V–Al2O3) composites have tensile strengths of 209 and 226?MPa, respectively, at room temperature. In addition, mechanical properties did not drop drastically at temperatures of up to 300°C.  相似文献   

3.
《Composites Part A》2007,38(2):615-620
Al2O3–FeCrAl composites were fabricated by mixing Fe2O3, Al and Cr powders and then reactive hot pressing. The high temperature alloy FeCrAl was formed by the reaction of extra Al, Cr and the Fe reduced from Fe2O3. The Al2O3–FeCrAl composites with various Al2O3 fractions were successfully fabricated by the proper addition of extra Fe, Cr, Al or Al2O3 powders. A five-layer functionally graded material of YSZ–FeCrAl was fabricated using the Al2O3–FeCrAl composites with compositions of 25, 53.2 and 75 vol.% Al2O3 as interlayer. The results from XRD analysis, optical microscope observation and thermal cycling test show that the composites fabricated by this method consist of α-Al2O3 phase and (Fe, Cr, Al) solid solution. The α-Al2O3 grain formed by this in-situ reaction between Fe2O3 and Fe is ultrafine and uniform distribution. The three-point bending strength is 305.0 MPa for the composite with 53.2 vol.% Al2O3 prepared by the reactive hot pressing, about 20% higher than that of the composite with same composition prepared by ex situ hot pressing method (252.0 MPa). No cracking was found in the functionally graded materials after 10 thermal cycles up to 1000 °C due to the better metal–ceramic bond, continuous in microstructure at interface of FGM and good oxidation resistance component FeCrAl alloy formed in the FGM.  相似文献   

4.
In this study, a novel approach was used to fabricate Al2O3 nanoparticle reinforced aluminum composites to avoid agglomeration of nanoparticles in matrix. Al2O3 nanoparticles were separately milled with aluminum and copper powders at different milling durations and incorporated into A356 alloy via stir casting method. The effects of milling process and milling time on mechanical properties of the composites were evaluated by hardness, tensile, and compression tests. Based on the results, some of the composites, reinforced with Al2O3-metallic mixed powders, showed higher mechanical performance compared with that of the pure Al2O3 nanoparticle reinforced composite. This enhancement is related to uniform distribution of individual nanoparticles and grain refinement of A356 matrix, shown in microstructural studies. Moreover, the results showed that an increase in milling time, led to a gradual decrease in mechanical performance of the samples. It can be related to further oxidation of metallic powders that can act as inclusions and also further probable contamination of nanoparticles with increase in milling time. Studies on the fracture surfaces revealed that the failure of matrix was the basic mechanism of fracture in the composites. Agglomerated nanoparticles were observed on dendrites in the fracture surface of the Al2O3–Al reinforcement samples.  相似文献   

5.
Ceramic particle reinforced aluminum metal matrix composites (MMCs) have resulted in potential use in aerospace and automobile industries. The composites have been processed by mechanical milling followed by traditional powder metallurgy route. The Al crystallite size is reduced to 27 nm after 60 h of milling. Results of the corrosion tests, evaluated using the potentiodynamic method in the NaCl solution, indicate that corrosion of the investigated composite materials depends on the weight fraction of the reinforcing particles. It has been found out, based on the determined anode polarization curves, that the investigated materials are susceptible to pitting corrosion. Moreover, experimental results suggest that the milled composite material Al–Zn/Al2O3p has higher corrosion resistance in the selected environment compared to unmilled composite Al–Zn/Al2O3p. Polarization curves show that the milling procedure improves the composite corrosion resistance in passive conditions. This is illustrated by the corrosion potential, which becomes nobler with milling.  相似文献   

6.
Tribological properties of bulk Al6061–Al2O3 nanocomposite prepared by mechanical milling and hot pressing were investigated. Al6061 chips were milled for 30 h to achieve a homogenous nanostructured powder. A 3 vol.% Al2O3 nanoparticles (∼30 nm) were added to the Al6061 after 15 and 30 h from the beginning of milling. The milling times with Al2O3 in these two samples were then 15 h and 30 min, respectively. Additionally, 3 vol.% Al2O3 (1 μm and 60 μm) was added to the Al6061 after 15 h of milling; where, the micron size Al2O3 in these two samples, was milled 15 h with the matrix. Hot pressing of milled samples was executed at 400 °C under 128 MPa pressure in a uniaxial die. The hot pressed samples were characterized by micro-hardness test, bulk density measurements, pin on disc wear test, and finally scanning electron microscopy observations. Fifteen hour-milled nanocomposite with nanoscale Al2O3, showed improvement in wear resistance and bulk density compared with that of 30 min-milled nanocomposites due to better dispersion of Al2O3 nanoparticles, improved surface quality of nanocomposite particles before pressing and more grain refinement of Al matrix. Moreover, increasing the reinforcement size increased the wear rate because of reduction in relative density, hardness and inter-particle spacing.  相似文献   

7.
Two different methods are used to prepare Cu–20 vol-% Al2O3 nanocomposite powders via high-energy planetary fast milling. In the solid solution method, CuO powder was added to the Cu–Al solid solution powder, and the composite was fabricated by milling after 100?h. In the direct mixing method, Cu and Al2O3 powders were mechanically milled via high-energy planetary fast milling for 100?h. The transition electron micrographs (dark and white fields) revealed the presence of Al2O3 nanoparticles in crystalline Cu matrices for both methods. However, the density and bending strength of the nanocomposites produced via the solid solution method were higher than those of the samples produced via the direct mixing method.  相似文献   

8.
Five volume percent of carbon nanotubes and 2024Al alloy powder were mixed with ball milling method, and then the composite was fabricated at 873 K by hot pressing sintering technique. The microstructure of the composite was investigated using optical microscopy, transmission electron microscopy, and X-ray diffraction. The experimental results showed that carbon nanotubes are reacted and changed into Al4C3. Nano-Al4C3 phases with needle shape are distributed mainly on Al grain boundaries; meanwhile some of them exist within Al grains. The reaction mechanism of carbon nanotubes-Al is discussed.  相似文献   

9.
Al2O3/Y2O3-doped ZrO2 composite powders with 25 mol% ZrO2 have been prepared by the hydrazine method. As-prepared powders are the mixtures of AlO (OH) gel solid solutions and amorphous ZrO2. The formation process leading to -Al2O3/t-ZrO2 composite powders is investigated. Hot isostatic pressing has been performed for 1 h at 1500 °C under 196 MPa. Dense ZrO2-toughened Al2O3 (ZTA) ceramics with homogeneous-dispersed ZrO2 particles show excellent mechanical properties. The toughening mechanism is discussed.  相似文献   

10.
Reactive milling of nickel oxide and aluminium powders corresponding to the stoichiometric reaction 3NiO + 5Al resulted in the formation of intermetallic matrix composite NiAl-Al2O3, with 28 wt% of alumina. Prolongation of the milling process allowed obtaining the microstructure with nanosize range of crystallites of both phases, as showed XRD measurements and TEM observations. The refinement of microstructure was accompanied with an increase of lattice strain as a result of ball milling. The particles size and morphology changed from several tens of micrometers and polyhedron shape observed immediately after the reaction took place, to several micrometers and spherulitic shape after long-term milling. Two consolidation techniques of nanocomposite powders were applied: explosive compaction and hot-pressing under high pressure. Both methods allowed obtaining the samples of high density (up to 99% of theoretical one) and microhardness above 13 GPa. Simultaneously, a nanocrystalline structure of the material was preserved.  相似文献   

11.
In this study, LaB6–Al2O3 nanocomposite powders were synthesized via ball milling-assisted annealing process starting from La2O3–B2O3–Al powder blends. High-energy ball milling was conducted at various durations (0, 3, 6 and 9 h). Then, the milled powders were annealed at 1200 °C for 3 h under Ar atmosphere in order to obtain LaB6 and Al2O3 phases as reaction products. X-ray diffractometry (XRD), scanning electron microscopy/energy-dispersive spectrometry (SEM/EDS) and transmission electron microscopy (TEM) techniques were utilized to carry out microstructural characterization of the powders. No reaction between the reactants was observed in the XRD patterns of the milled powders, indicating that high-energy ball milling did not trigger any chemical reactions even after milling for 9 h. LaAlO3 and LaBO3 phases existed in the annealed powders which were milled for 0, 3 and 6 h. LaBO3 phase was removed after HCl leaching. 9-h milled and annealed powders did not exhibit any undesired phases such as LaAlO3 and LaBO3 after leaching step, and pure nanocrystalline LaB6–Al2O3 composite powders were successfully obtained. TEM analyses revealed that very fine LaB6 particles (~?100 nm) were embedded in coarse Al2O3 (~?500 nm) particles.  相似文献   

12.
The displacement reaction between Al and SiO2 in an Al–3wt%Cu–3wt%Si–9wt%SiO2 powder mixture has been studied when the mixture had been ball-milled, and compared with the reaction in the as-mixed powder. Diffusion couples consisting of Al/SiO2 were formed during ball milling. The size of the composite powder particles and the diffusion couples was reduced by increasing the ball milling time. Differential thermal analysis and X-ray diffraction results showed that the displacement reaction between Al and SiO2 did not occur in the as-mixed powder, but occurred in the as-milled powders in the temperature range of 640–680 °C. Furthermore, the onset temperature of the displacement reaction shifted to lower temperatures after increasing the ball milling time. On the basis of these results the milled powder was sintered at 640 °C in order to produce an Al–Cu–Si matrix composite reinforced with homogeneously distributed submicron-sized Al2O3 particles. This is much lower than the temperature required for the same reaction in other processes which are used to produce such composites, such as the melting infiltration process.  相似文献   

13.
Powder metallurgical fabrication of SiC and Al2O3 reinforced Al‐Cu alloys Based on metallographic studies the states of composite powder formation during high‐energy ball milling will be discussed. Spherical powder of aluminium alloy AA2017 was used as feedstock material for the matrix. SiC and Al2O3 powders of submicron and micron grain size (<2 μm) were chosen as reinforcement particles with contents of 5 and 15 vol.‐% respectively. The milling duration amounted to a maximum of 4 hours. The abrasion of the surface of the steel balls, the rotor and the vessel is indicated by the content of ferrous particles in the powder. High‐energy ball milling leads to satisfying particle dispersion for both types of reinforcement particles. Further improvements are intended. The microstructure of compact material obtained by hot isostatic pressing and extrusion was studied in detail by scanning and transmission electron microscopy. For both types of reinforcement the microstructure of composites is similar. The microporosity is low. The interface between reinforcement particles and matrix is free of brittle phases and microcracks. In the case of SiC reinforcement particles, a small interface interaction is detectable which implies a good embedding of reinforcement particles. High‐energy ball milling under air‐atmosphere leads to the formation of the spinel phase MgAl2O4 during the subsequent powder‐metallurgical processing. Because of the size, rate and dispersion of the spinel particles, an additional reinforcement effect is expected.  相似文献   

14.
In this research, in situ fabrication of Al3V based nanocomposite and its formation mechanism have been investigated. In order to synthesize Al3V/Al2O3 nanocomposite, a mixture of Al and V2O5 powders was subjected to high-energy ball milling and the nanocomposite was produced through a mechanochemical reaction. The produced structure was isothermally heat-treated at 500–600 °C for 0.5–2 h under argon atmosphere. In order to evaluate the structural changes during milling and annealing, the synthesized powders were characterized by X-ray diffraction (XRD). Moreover, the powder morphological changes were studied by scanning electron microscopy (SEM). It was observed that the reaction between Al and V2O5 occurred after about 30 min and, the Al3V and Al2O3 were formed in nanocrystalline structure with the continuing mechanical milling. Calculation of adiabatic temperature confirmed that reaction took place in combustion mode. In final stage of milling up to 40 h; it was observed that the Al3V decomposed to Al and V so that the optimum time of milling to achieve fabrication of nanocomposite was determined to be about 20 h. Calculations based on Miedema’s model verified partial disordering of Al3V during further milling and annealing of as-milled powder at 600 °C led to the ordering of Al3V. The crystallite size of Al3V and Al2O3 after annealing at 600 °C for 2 h remained in nanometer scale. So the final product appeared to be stable even after annealing.  相似文献   

15.
Pure Al powders were mixed with a 30 % volume fraction of Al2O3 powders having particle sizes of ~30 nm. The mixed powders were first subjected to ball milling (BM) and thereafter consolidated by high-pressure torsion (HPT) at room temperature under a pressure of 3 GPa for 10 turns. The Al–Al2O3 composite produced by BM and HPT (BM + HPT) had a more uniform dispersion of the nano-sized Al2O3 particles in the Al matrix. Hardness values of the BM + HPT composites were higher than those of the composites without BM. It is shown that the use of BM powders for HPT is more effective in achieving a uniform dispersion of the nano-sized Al2O3 particles and in improving mechanical properties of the Al–Al2O3 nanocomposites.  相似文献   

16.
In this research a nano-composite structure containing of an intermetallic matrix with dispersed Al2O3 particles was obtained via mechanical activation of TiO2 and Al powder mixture and subsequent sintering. The mixture has been milled for different lengths of time and then as a subsequent process it has been sintered. Phase evolutions in the course of milling and subsequent sintering of the milled powder mixture were investigated. Samples were characterized by XRD, SEM, DTA and TEM techniques.The results reveal that the reaction begins during milling by formation of Al2O3 and L12 Al3Ti and further milling causes partial amorphization of powder mixture. DTA results reveal that milling of the powder mixture causes solid state reaction between Al and TiO2 rather than liquid–solid reaction. Also, it was observed that the exothermicity of aluminothermic reduction is reduced by increasing the milling time and the exothermic peak shifts to lower temperatures after partial amorphization of powder mixture during milling. Phase evolutions of the milled powders after being sintered reveal that by increasing the milling time and formation of L12 Al3Ti in the milled powder, intermediate phase formed at 500 °C changes from D022 Al3Ti to Al24Ti8 phase.  相似文献   

17.
Abstract

Quasicrystalline phase formation during heat treatment in the mechanically alloyed Al65Cu20Fe15 powders was studied by X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The mechanical alloying was performed at speed of 300 rev min–1 for times up to 70 h. It was found that mechanical alloying of the Al65Cu20Fe15 powders did not result in the quasicrystalline (QC) icosahedral phase (i-phase) formation. The long time milling resulted in the formation of a cubic Al (Cu,Fe) solid solution phase (β-phase). The cubic Al (Cu,Fe) solid solution identified as β-phase was observed to be present as one of the major phases in the Al65Cu20Fe15 alloy. The formation of the quasicrystalline icosahedral phase (i-phase) was only observed for short time milled powders after additional annealing at temperature above 500°C. The present investigation also showed that a tetragonal Al2Cu phase (θ-phase) forms with short time milling. The tetragonal Al7Cu2Fe1 phase (w-phase) was observed after heat treatment of the short time milled and unmilled powders. The present investigation indicated that an effective process to prepare the quasicrystalline materials was using a combination of short time milling and subsequent annealing.  相似文献   

18.
The wetting behavior of NiO single crystal by liquid aluminum has been studied by the sessile drop method under vacuum at 973–1273 K for 2 h. Optical microscopy, SEM, EDS and X-ray analysis were applied to characterize the structure and chemistry of solidified cross-sectioned sessile drop couples. Under tested conditions, molten Al wets and reacts with NiO to form Al2O3 and Ni. This leads to alloying of the initially pure Al drop with Ni to the hypereutectic composition and to the formation of a thick reaction product region inside the NiO substrate, whose structure presents interpenetrated networks of fine alumina precipitates and an Al–Ni matrix. After solidification the Al–Ni matrix and the drop have the same phase composition, which is in agreement with Al–Ni phase diagram, showing the formation of Al3Ni at T < 1128 K and Al3Ni2 at 1128 K < T < 1406 K. The strong reactivity of Al/NiO couples, accompanied with the drop deformation, fragmentation of the reaction product region and development of a crater under the drop, contributes to the perturbation of the triple line and to the formation of apparent contact angles at 1073–1273 K. This leads to unusual changes of measured contact angles with temperature, decreasing from 84° at 973 K to 36° at 1073 K, and then increasing to 75° at 1273 K, while structural analysis suggests complete wetting at 1073 K.  相似文献   

19.
Two different types of solid samples of bytownite (Ca0.7Na0.3Al2Si2O8 to Ca0.9Na0.1Al2Si2O8) composition were fabricated from synthetic crystal and glass powders. The crystal and the glass powders were produced by crystallisation or melting of a gel of bytownite composition. Cold pressing under vacuum followed by hot isostatic pressing (hip) of the powders produced fully dense samples composed either of 100% bytownite crystals or of 90% bytownite crystals and 10% bytownite glass. The cold-pressed samples were composed of a matrix of nanometer sized bytownite needles and larger crystals of up to 3 m in size. During hot pressing the grain sizes in the matrix increased slightly while larger crystals increased to close to 4 m. The rheological behaviour of the hot isostaticly pressed samples for cases of tri axial compression and torsion was tested in a gas confining deformation apparatus at high temperature and confining pressure. Grain growth was observed during the deformation experiments. The maximum flow stress was typically less than 200 MPa and was attained by sample strain of 10% during axial compression and a shear strain of 1.0 during torsion. The resulting microstructures were dominated by fibrous grains for the compressive deformation and by more round-shaped grain boundaries during torsion. Both type of experiments induced a preferred shape and crystallographic orientation.  相似文献   

20.
Al-Fe-Ni ternary powder mixtures containing 25 at.%Fe-5 at.%Ni and 25 at.%Fe-10 at.%Ni were mechanically alloyed by a high-energy planetary ball mill. Structural evolution of these powders during milling was investigated by X-ray diffraction technique and transmission electron microscopy. Almost complete amorphous phase in Al70Fe25Ni5 system is observed at the early milling stage. The amorphous phase transforms into metallic compound Al5(Fe,Ni)2 and then the compound changes to ordered Al(Fe,Ni) phase. The last milling products in Al70Fe25Ni5 system are amorphous phase plus nanocrystalline of the disordered Al(Fe,Ni) phase changed from the ordered Al(Fe,Ni) phase. During milling of Al65Fe25Ni10 system, α-Al and α-Fe solid solutions formed at the early stage change to the ordered Al(Fe,Ni) compound and at last the ordered phase changes to the disordered Al(Fe,Ni) phase. Ten percent of Ni addition promotes retardation of the formation of the amorphous phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号