首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Journal of Superconductivity and Novel Magnetism - Two-dimensional materials with a novel honeycomb-kagome structure have got a variety of attentions owing to their dramatic properties. In the...  相似文献   

2.
Liu  Bo  Fu  Yu  Cheng  Jinbing  Zhu  Wenliang  He  Junbao  Liu  Congbin  Li  Liang  Luo  Yongsong 《Journal of Superconductivity and Novel Magnetism》2022,35(11):3263-3269
Journal of Superconductivity and Novel Magnetism - We have prepared high-quality nearly stoichiometric single crystal of Dirac semimetal SrMnSb $$_{2}$$ and systematically investigated the physical...  相似文献   

3.
Journal of Superconductivity and Novel Magnetism - The vicinities of two resonance points where longitudinal and transverse elastic waves interact with the magnetic mode are considered. The caustic...  相似文献   

4.
We prepared a lead-free ceramic (\(\hbox {Ba}_{0.85}\hbox {Ca}_{0.15})(\hbox {Ti}_{1-x}\hbox {Zr}_{x})\hbox {O}_{3}\) (BCTZ) using the conventional mixed oxide technique. The samples were prepared by an ordinary mixing and sintering technique. In this study we investigated how small amounts of \(\hbox {Zr}^{4+}\) can affect the crystal structure and microstructure as well as dielectric and piezoelectric properties of \(\hbox {BaTiO}_{3}\). X-ray diffraction analysis results indicate that no secondary phase is formed in any of the BCTZ powders for \(0 \le x \le 0.1\), suggesting that \(\hbox {Zr}^{4+}\) diffuses into \(\hbox {BaTiO}_{3}\) lattices to form a solid solution. Scanning electron microscopy micrographs revealed that the average grain size gradually increased with \(\hbox {Zr}^{4+}\) content from 9.5 \(\upmu \!\hbox {m}\) for \(x = 0.02\) to 13.5 \(\upmu \!\hbox {m}\) for \(x = 0.1\); Curie temperature decreased due to the small tetragonality caused by \(\hbox {Zr}^{4+}\) addition. Owing to the polymorphic phase transition from orthorhombic to tetragonal phase around room temperature, it was found that the composition \(x = 0.09\) showed improved electrical properties and reached preferred values of \(d_{33} = 148\) pC \(\hbox {N}^{-1}\) and \(K_{\mathrm{p}} = 27\%\).  相似文献   

5.
Journal of Superconductivity and Novel Magnetism - We have studied the magnetic properties of transition metal intercalated niobium dichalcogenides CoNb $$_3$$ S $$_6$$ , NiNb $$_3$$ S $$_6$$ and...  相似文献   

6.
In this study, we present the results of the manufacturing of \(\hbox {BaTiO}_{3}\) powder, which is meant for use in stacked-disk multilayer actuator production. The solid-state technique was used for powder preparation. The properties of barium titanate material, at each stage of its fabrication (powder, granulate, sintered material), influencing on its application for the stacked-disk multilayer actuator were determined. Particularly, the four parameters of \(\hbox {BaTiO}_{3}\) sinter affecting on the usability properties of actuators, not found before in the literature, were estimated. Parameters characterizing the extent of material sintering, SEM microstructures and electric properties of the fabricated pellets are presented and discussed. The dilatometric curve was executed using the high temperature dilatometer to determine at which temperature barium titanate pellets and beams should be sintered to receive full dense sinters. Parameters characterizing the extent of material sintering: the apparent density, the apparent porosity and the water absorbability were estimated. Finally, the problem of metal layer deposition on barium titanate ceramics during actuator fabrication is considered.  相似文献   

7.
The radiative properties of dense ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN, and \(\hbox {Si}_{3}\hbox {N}_{4}\) plates are investigated from the visible to the mid-infrared region at room temperature. Each specimen has different surface finishings on different sides of the laminate. A monochromator was used with an integrating sphere to measure the directional-hemispherical reflectance and transmittance of these samples at wavelengths from 0.4 \(\upmu \hbox {m}\) to 1.8 \(\upmu \hbox {m}\). The specular reflectance was obtained by a subtraction technique. A Fourier-transform infrared spectrometer was used to measure the directional-hemispherical or specular reflectance and transmittance with appropriate accessories from about 1.6 \(\upmu \hbox {m}\) to 19 \(\upmu \hbox {m}\). All measurements were performed at near-normal incidence on either the smooth side or the rough side of the sample. The experimental observations are qualitatively interpreted considering the optical constants, surface roughness, and volume scattering and absorption.  相似文献   

8.
\(\hbox {Yb}^{3+}/\hbox {Er}^{3+}\), \(\hbox {Yb}^{3+}/\hbox {Tm}^{3+}\), or \(\hbox {Yb}^{3+}/\hbox {Tm}^{3+}/\hbox {Gd}^{3+}\) co-doped \(\hbox {KLu}_{2}\hbox {F}_{7}\) up-conversion (UC) materials were synthesized through a hydrothermal method or an additive-assisted hydrothermal method. The X-ray diffraction (XRD) results suggested that the materials crystallized in orthorhombic phase, yet, the potassium citrate (CitK) introduction affected immensely the crystalline purity of final material. The field emission scanning electron microscopy (FE-SEM) results suggested that the additive adding had effects on size and morphology of the material, which affected the UC emissions further. Green/red UC emissions of \(\hbox {Er}^{3+}\), UV/blue/IR UC emissions of \(\hbox {Tm}^{3+}\), and UV UC emissions of \(\hbox {Gd}^{3+}\) were observed in the orthorhombic phase of \(\hbox {KLu}_{2}\hbox {F}_{7}\) materials. The excitation power-dependent UC emissions illustrated that the UC emission intensity initially increased, then decreased with the increase in excitation power. At the same time, the variation rates of different transitions in \(\hbox {Er}^{3+}\) or \(\hbox {Tm}^{3+}\) are also different. In addition, the \(\hbox {Er}^{3+}\) or \(\hbox {Tm}^{3+}\) concentration-dependent UC emission results suggested that the optimal doping concentration of \(\hbox {Er}^{3+}\) is 2 mol% and \(\hbox {Tm}^{3+}\) is 0.5 mol% with the \(\hbox {Yb}^{3+}\) concentration fixed as 20 mol%. The experimental results suggest that the orthorhombic phase of \(\hbox {KLu}_{2}\hbox {F}_{7}\) should be a good host lattice for UC emitters.  相似文献   

9.
The effect of thermal annealing in an inert atmosphere (argon) on the structural and thermochromic properties of \(\hbox {MoO}_{3}\) thin films was investigated. \(\hbox {MoO}_{3}\) thin films were deposited by thermal evaporation in vacuum of \(\hbox {MoO}_{3}\) powders. X-ray diffraction patterns of the films showed the presence of the monoclinic Magneli phase \(\hbox {Mo}_{9}\hbox {O}_{26}\) for annealing temperatures above \(250\,{^{\circ }}\hbox {C}\). Absorbance spectra of the films annealed in argon indicated that their thermochromic response increases with the annealing temperature in the analyzed range (23 \({^{\circ }}\hbox {C}\)–300 \({^{\circ }}\hbox {C}\)), a result opposite to the case of thermal annealings in air, for which case the thermochromic response shows a maximum value around 200 \({^{\circ }}\)C–225 \({^{\circ }}\)C and decreases for higher temperatures. These results are explained in terms of a higher density of oxygen vacancies formed upon thermal treatments in inert atmospheres.  相似文献   

10.
The tetragonal scheelite-type \(\hbox {Sm}^{3+}\hbox {/Bi}^{3+}\) ions co-doped with \(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\) phosphors were synthesized by a facile sol–gel and combustion process using citric acid as complexing agent. The crystal structure and morphology of these as-prepared samples were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Furthermore, UV-absorption and the photoluminescence (PL) properties of these phosphors were systematically investigated and the PL of the phosphors shows strong white light emissions. Efficient energy transfer from the \(\hbox {MoO}_{4}^{2-}\) group or \(\hbox {Bi}^{3+}\) ions to \(\hbox {Sm}^{3+}\) ions was established by PL investigation excited at 405 nm. The PL intensity of the studied materials was investigated as a function of different \(\hbox {Sm}^{3+}\) and \(\hbox {Bi}^{3+}\) concentrations. The PL investigations revealed that the phosphors exhibit apparent characteristic emissions, which is ascribed to the transition from the ground state energy level \(^{4}\hbox {G}_{5/2}\) to excited state energy levels \(^{6}\hbox {H}_{\mathrm{J}}\) (\(J= 5/2, 7/2, 9/2\)) and the \(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\): 4 mol% \(\hbox {Sm}^{3+}\) and \(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\): 4 mol% \(\hbox {Sm}^{3+}\), 8 mol% \(\hbox {Bi}^{3+}\) present white emissions with the CIE coordinates of (0.350, 0.285) and (0.285, 0.229), respectively. The absolute quantum efficiencies of the phosphors are 40% (\(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\): 4 mol% \(\hbox {Sm}^{3+}\)) and 52% (\(\hbox {NaLa}(\hbox {MoO}_{4})_{2}\): 4 mol% \(\hbox {Sm}^{3+}\), 8 mol% \(\hbox {Bi}^{3+}\)), respectively.  相似文献   

11.
Tetragonal \(\text {NaY}(\text {MoO}_{4})_{2}\) (NYM) phosphors co-doped with \(\hbox {Yb}^{3+}\) and \(\hbox {Tm}^{3+}\) ions were synthesized through microwave hydrothermal method followed by calcining treatment. Powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy and photoluminescence spectra were used to characterize the properties of as-prepared samples. The results show that \(\hbox {Yb}^{3+}\)/\(\hbox {Tm}^{3+}\) co-doped NYM displayed bright blue emission near 472 and 476 nm (\(^{1}\hbox {G}_{4}\rightarrow {}^{3}\hbox {H}_{6}\) transition), strong near-infrared upconversion (UC) emission around 795 nm (\(^{3}\hbox {H}_{4}\rightarrow {}^{3}\hbox {H}_{6}\) transition). The optimum doping concentrations of \(\hbox {Yb}^{3+}\) and \(\hbox {Tm}^{3+}\) for the most intense UC luminescence were obtained, and the related UC mechanism of \(\hbox {Yb}^{3+}\)/\(\hbox {Tm}^{3+}\) co-doped NYM depending on pump power was studied in detail.  相似文献   

12.
A LiNbO3 bicrystal that contains a {2\( \bar{1} \) \( \bar{1} \)0} low-angle grain boundary with both of 2° tilt misorientation and a slight twist misorientation was fabricated, and resulting dislocation structure at the boundary was analyzed by using transmission electron microscopy (TEM) and scanning TEM. The observations revealed that two types of dislocations of b = 1/3 <2\( \bar{1} \) \( \bar{1} \)0> and b = <10\( \bar{1} \)0> are formed at the boundary. A 1/3 <2\( \bar{1} \) \( \bar{1} \)0> dislocation, which dissociates into two partial dislocations with a {2\( \bar{1} \) \( \bar{1} \)0} stacking fault in between, compensates only tilt misorientation of the boundary. On the other hand, it was found that a <10\( \bar{1} \)0> dislocation, which dissociates into three equivalent partial dislocations with b = 1/3 <10\( \bar{1} \)0>, has both edge and screw components in total. That is, the <10\( \bar{1} \)0> dislocations are formed to compensate the twist misorientation of the boundary, in addition to the tilt misorientation. It is interesting that the three partial dislocations from a <10\( \bar{1} \)0> dislocation are arranged in a zigzag pattern with left–right asymmetry. This special configuration is suggested to originate from the presence of stable stacking fault structure on the {2\( \bar{1} \) \( \bar{1} \)3} plane in LiNbO3.  相似文献   

13.
We report the effects of annealing in conjunction with \(\hbox {CdCl}_{2}\) treatment on the photovoltaic properties of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S thin film solar cells. CdTe layer is subjected to dry \(\hbox {CdCl}_{2}\) treatment by thermal evaporation method and subsequently, heat treated in air using a tube furnace from 400 to \(500{^{\circ }}\hbox {C}\). AFM and XRD results show improved grain size and crystallographic properties of the CdTe film with dry \(\hbox {CdCl}_{2}\) treatment. This recrystallization and grain growth of the CdTe layer upon \(\hbox {CdCl}_{2}\) treatment translates into improved photo-conversion efficiencies of \(\hbox {CdTe/Zn}_{0.1}\hbox {Cd}_{0.9}\)S cell. The results of dry \(\hbox {CdCl}_{2}\) treatment were compared with conventional wet \(\hbox {CdCl}_{2}\) treatment. Photo-conversion efficiency of 5.2% is achieved for dry \(\hbox {CdCl}_{2}\)-treated cells in comparison with 2.4% of wet-treated cell at heat treatment temperature of \(425{^{\circ }}\hbox {C}\).  相似文献   

14.
\(\hbox {NO}_{2}^{-}\) and \(\hbox {SCN}^{-}\) are two common small inorganic anions. The former is a common industrial pollutant. The latter is linear and is a good mimic for the toxic \(\hbox {CN}^{-}\) ion. The structures of these two anions are refined within the gallery of the [Zn–Al]-layered double hydroxide (LDH). Both LDHs crystallize as mixed anion phases. The nitrite is found to co-exist with the nitrate ion. The nitrite ion is intercalated with its molecular plane inclined to the metal hydroxide layer. In the case of the \(\hbox {SCN}^{-}\) intercalated LDH, no other anion was detected by ion chromatography, suggesting that the \(\hbox {SCN}^{-}\) deficiency is compensated by intercalated hydroxyl ions. In this case, the \(\hbox {SCN}^{-}\) ion is found to be intercalated with its molecular axis inclined to the metal hydroxide layer.  相似文献   

15.
A new method is developed for correlating the static dielectric constant of polar fluids over wide ranges of conditions where few experimental data exist. Molecular dynamics simulations are used to establish the temperature and density dependence of the Kirkwood g-factor, and also the functional form for the increase of the effective dipole moment with density. Most parameters in the model are obtained entirely from simulation; a single proportionality constant is adjusted to obtain agreement with the limited experimental data. The method is applied to hydrogen sulfide (\(\hbox {H}_{2}\hbox {S}\)) and sulfur dioxide \((\hbox {SO}_{2})\), both of which are important in geochemistry but have only a few dielectric data available. The resulting correlations agree well with the available liquid data, obey physical boundary conditions at low density and at high temperature, and interpolate in density and temperature in a physically reasonable manner. In addition, we present a more conventional correlation for the dielectric constant of sulfur hexafluoride, \(\hbox {SF}_{6}\), where more data are available.  相似文献   

16.
In this work, we report on structural, optical, photocatalytic and nitrogen adsorption–desorption characteristics of \(\hbox {WS}_{2 }\) nanosheets developed via a hydrothermal route. X-ray diffraction (XRD) studies have revealed a hexagonal crystal structure, whereas nanodimensional sheets are apparently observed in scanning and transmission electron microscopy (SEM and TEM) micrographs. As compared to the bulk counterpart, the \(\hbox {WS}_{2}\) nanosheets exhibited a clear blue shift. Through Brunauer–Emmett–Teller (BET) surface area analysis, average surface area, pore volume and pore size of the NSs were calculated as 211.5 \(\hbox {m}^{2}~\hbox {g}^{-1}\), 0.433 cc \(\hbox {g}^{-1}\) and 3.8 nm, respectively. The photocatalytic activity of the \(\hbox {WS}_{2}\) nanosheets was also examined with malachite green (MG) as the target dye under both UV and day light (visible) illumination conditions. Accordingly, a degradation efficiency as high as 67.4 and 86.6% were witnessed for an irradiation time duration of 60 min. The nano-\(\hbox {WS}_{2}\) systems have immense potential in optoelectronics, solid-lubrication and other next generation elements.  相似文献   

17.
研究了BaTiO3铁电陶瓷在恒载荷下的应力腐蚀,环境分别为湿空气、水、硅油和甲酰胺.结果表明,BaTiO3铁电陶瓷在湿空气、硅油、水和甲酰胺中都能发生应力腐蚀,其本质是介质分子吸附降低表面能.在空气中的瞬时断裂为穿晶断裂,滞后断裂大部分为穿晶断裂,局部为沿晶断裂.在这四种环境中,归一化应力腐蚀门槛应力强度因子分别为KIsCC/KIC=0.78(空气),0.63(水),0.66(硅油)和0.82(甲酰胺),其断裂韧性为KIC=1.29±0.14 MPa·m1/2.  相似文献   

18.
Interface‐driven magnetic effects and phenomena associated with spin–orbit coupling and intrinsic symmetry breaking are of importance for fundamental physics and device applications. How interfaces affect the interplay between charge, spin, orbital, and lattice degrees of freedom is the key to boosting device performance. In LaMnO3/SrTiO3 (LMO/STO) polar–nonpolar heterostructures, electronic reconstruction leads to an antiferromagnetic to ferromagnetic transition, making them viable for spin filter applications. The interfacial electronic structure plays a critical role in the understanding of the microscopic origins of the observed magnetic phase transition, from antiferromagnetic at 5 unit cells (ucs) of LMO or below to ferromagnetic at 6 ucs or above, yet such a study is missing. Here, an atomic scale understanding of LMO/STO ambipolar ferromagnetism is offered by quantifying the interface charge distribution and performing first‐principles density functional theory (DFT) calculations across this abrupt magnetic transition. It is found that the electronic reconstruction is confined within the first 3 ucs of LMO from the interface, and more importantly, it is robust against oxygen nonstoichiometry. When restoring stoichiometry, an enhanced ferromagnetic insulating state in LMO films with a thickness as thin as 2 nm (5 uc) is achieved, making LMO readily applicable as barriers in spin filters.  相似文献   

19.
Full phonon calculations have been performed to estimate the thermal properties of rutile (titanium dioxide). Calculations have been carried out using the pseudo-potential method within the local density approximation. Thermodynamic properties including the thermal expansion, thermal expansion coefficient, heat capacity and entropy were calculated as a function of temperature in the framework of quasi-harmonic approximation. Also, to compare the results with the results of other approaches, we apply Debye–Slater and Debye–Gruneisen approaches with the same parameters for electronic calculations. It is found that the phonon calculations provide more accurate estimates in comparison with the other two models.  相似文献   

20.
Core–shell-structured \(\hbox {TiO}_{2}\)@PANI composites were fabricated using negatively charged titanium glycolate (TG) precursor spheres, which were decorated using hydrochloric acid; subsequently, the uniform polyaniline (PANI) layer could be attached onto the surface of the polystyrene spheres by in situ chemical oxidative polymerization and finally, the resulting PANI-grafted TG were allowed to hydrolyse by treating the material with hot water. The TGs were transformed to porous \(\hbox {TiO}_{2}\), leading to the formation of core–shell \(\hbox {TiO}_{2}\)@PANI composites. The resulting \(\hbox {TiO}_{2}\)@PANI composite photocatalysts were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet–visible diffuse reflection spectroscopy and photoluminescence spectroscopy. Significantly, the \(\hbox {TiO}_{2}\)@PANI composite photocatalysts exhibited dramatically enhanced photo-induced electron–hole separation efficiency, which was confirmed by the results of photocurrent measurements. PANI was dispersed uniformly over the porous \(\hbox {TiO}_{2}\) surface with an intimate electronic contact on the interface to act cooperatively to achieve enhanced photocatalytic properties, indicating that core–shell \(\hbox {TiO}_{2}\)@PANI composite photocatalysts could be promising candidate catalysts under visible-light irradiation. The mechanism of enhancing photocatalytic activity was proposed on the basis of the experimental results and estimated energy band positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号