首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
极化SAR地物分类作为极化SAR数据解译的关键环节,已成为遥感领域研究的一个新热点。在充分研究现有方法的基础上,给出了一种联合特征和SVM相结合的极化SAR图像分类方法。该方法基于目标分解理论提取极化SAR图像的多类散射特征,并结合具有上下文知识的纹理特征,构建联合特征矢量;利用提取样本区域像素的联合特征矢量训练SVM分类器;将未知数据输入训练好的分类器完成最终的分类。实测SAR图像数据的实验结果表明,算法能够充分利用极化SAR图像电磁散射特性及纹理特征的互补性,具有较好的分类性能。  相似文献   

2.
利用SVM的极化SAR图像特征选择与分类   总被引:1,自引:0,他引:1  
该文提出一种新的利用SVM的特征选择算法,并将其融入到极化SAR图像分类过程中,构成一种新的基于SVM的分类方法。其中,特征选择算法利用支持向量个数作为特征评估指标,并以顺序后退法作为搜索策略。真实数据的实验结果表明,该分类方法能有效降低SVM分类器对自身参数的敏感性,与利用原始特征集和经典的RELIEF-F的分类方法相比,该方法能以更少(或相当)的特征个数,在更广泛的SVM参数取值范围内获得更高的分类精度。  相似文献   

3.
在极化合成孔径雷达(synthetic aperture radar,SAR)图像理解和解译中,地物分类是重要的应用方向之一.为了研究多角度极化SAR图像的地物分类,文中基于极化统计特征差异性顺序,给出了多角度极化分解特征序列构建方法.首先,采用基于Wishart分布的统计量对非各向同性散射中心进行检测,并逐像素生成基于散射特征差异的新序列图像.然后,面向多种极化特征分解模型,提出通用的多角度极化特征一阶差分序列描述方法及编码方法,包括Yamaguchi四分量分解、Krogager分解以及H/A/Alpha分解,得到多维特征参数序列.最后,通过两种方法对比后最终选用支持向量机(support vector machine,SVM)方法对特征序列进行分类.通过机载P波段极化SAR开展360°观测试验,验证了该方法的有效性,并展示出在地物分类方面的应用潜力.  相似文献   

4.
简缩极化SAR作为一种特殊的双极化模式,可以获取较为全面的极化信息,同时也能获得较大的成像幅宽,近年来得到了研究人员的关注。但以往基于极化度的分解方法存在体散射过估计的问题,导致分解与分类的结果在城区部分,尤其是大方位角城区部分表现一般。本文采用基于城区描述子的简缩极化分解方法,将分解获取的特征进行Wishart迭代分类,同时利用SLIC算法进行超像素分割,在超像素区域内进行类别合并,从而改善分类效果。实验采用Radarsat-2旧金山区域的全极化数据仿真合成CTLR模式及π/4模式的简缩极化数据验证了算法的可行性,实验表明,对于两种模式,本文方法在小方位角城区分类精度提高约20%,大方位角城区分类精度提高约10%。  相似文献   

5.
SAR 图像中含有严重的相干斑噪声,传统的基于灰度的算法不能很好地对SAR 图像中的目标实现分类.将SAR图像的纹理特征和SVM(支撑向量机)结合,提出了一种新的SAR 图像目标识别算法.对含有油污的SAR图像进行识别,实验结果显示,该算法可以快速有效的检测出SAR图像中的油污,并且具有较高的识别率和抗噪能力.  相似文献   

6.
极化SAR图像分割是面向对象的极化SAR图像分析处理的重要组成部分,也是极化SAR图像处理的关键和难题。然而,目前还没有一种极化SAR分割方法被广泛接受。文章通过对现有的极化SAR图像分割方法进行综述,以使各位研究者对其有一个较全面的认识。文章首先介绍了国内外在极化SAR图像分割方面的主要研究机构;然后对现有的极化SAR图像分割算法进行了分类,并归纳了不同方法的基本思想,分析了各自的性能特点;最后对极化SAR图像分割方法的研究现状及发展趋势进行了总结和展望。  相似文献   

7.
一种基于Freeman分解与散射熵的极化SAR图像迭代分类方法   总被引:1,自引:0,他引:1  
该文提出了一种基于Freeman分解与散射熵的极化SAR图像迭代分类新方法。该方法首先通过Freeman分解提取3种散射机理成分的功率,同时通过H/ 分解提取地物的散射熵;再利用这4个表征地物特性的参数将极化SAR图像中的地物划分为9个初始类,最后使用Wishart分类器对初始类进行迭代分类得到最终的结果。该方法合理利用了地物的极化散射信息,能够取得较好的分类效果,同时运算量也比较小。实测极化SAR数据的实验结果验证了该方法的有效性。  相似文献   

8.
X波段的高分辨率极化干涉合成孔径雷达(synthetic aperture radar,SAR)图像包含较强的斑点噪声,不利于地物分类等应用.针对这一问题,先使用Nonlocal滤波进行预处理,然后提取图像的极化特征和干涉特征,再使用支持向量机(support vector machine,SVM)和AdaBoost分类器对极化和干涉特征矢量进行分类.利用N-SAR系统于渭南市采集的极化干涉SAR数据进行验证,该数据共包含10类地物,并有足够的ground truth用来进行分类器的训练和测试.实验结果表明,AdaBoost分类器能对多类地物取得较好的分类效果,且干涉信息的加入能带来一定改善.  相似文献   

9.
针对道路在高分辨率SAR图像中所具有的影像特征,提出了一种基于平行线对检测的高分辨率SAR图像主干道路自动提取算法.该算法以提出的新的平行线定义为核心,结合Marr视觉理论,使用自下而上的控制策略,对高分辨率SAR图像依次进行低层次的边缘检测(基于ROEWA算子)、中层次的道路特征结构化(平行线对检测)以及高层次的道路识别(路段生长、连接及去除伪道路),并在实验中给出了相应的算法演示结果图.实验结果表明,该算法能够准确有效地提取和定位高分辨率SAR图像中的主干道路.  相似文献   

10.
许璐  张红  王超  吴樊  张波  汤益先 《雷达学报》2020,9(1):55-72
极化信息能丰富合成孔径雷达(SAR)数据的信息量,在农业、环境、海洋、森林、军事等领域取得了广泛的应用,但同时也面临分辨率较低、幅宽较小的问题,带来较高的应用成本。简缩极化SAR(CP SAR)作为一种能同时获取较为丰富的地表信息并实现较大幅宽观测的极化SAR模式,在过去十余年中引起了科研人员的广泛关注。随着印度RISAT-1卫星的成功发射,简缩极化SAR在一系列应用研究中取得了新进展。该文简要介绍了简缩极化SAR的经典数据处理方法,总结了近十余年来简缩极化SAR在农业和海洋应用领域的主要研究成果,最后对其发展方向进行了分析与展望。   相似文献   

11.
该文对双站SAR(BISAR)模拟图像不同地物的极化特征分析,发现传统单站极化特征参数(,,)在BISAR图像上不再能有效地表现地物散射的极化特征。由此,提出了统一双站极化基变换,重新定义了极化特征参数,,,使其保持原有的分离取向关联等优点。经统一双站极化基变换后,不同地物散射的极化特征更明显,重新定义的,,能反应不同散射机制,提供了BISAR图像解译和地表分类的初步手段。  相似文献   

12.
多波段全极化合成孔径雷达(Multiband-PolSAR)可以获得地物目标在频率、极化两个维度上的多个观测量,在地物信息提取方面具有良好的应用潜力。然而数据维度增加,其数据处理和应用难度也随之增加,相较于处理单波段单极化SAR数据,处理Multiband-PolSAR数据需要额外考虑多维数据配准和融合的问题。该文选择以建筑轮廓自动提取应用为目标,依托中国科学院空天信息创新研究院在国家高分辨率观测系统重大专项支持下牵头研制的一部机载多维度SAR系统获得的数据,引入SAR-SIFT方法解决了多维数据配准的问题。其次,该文提出一种基于目标散射机制的多维信息融合方法,改进了Ferro 等人(doi: 10.1109/TGRS.2012.2205156)提出的全自动非监督建筑轮廓提取方法,证明了多波段多极化信息融合方法的作用。多波段多极化信息融合前后的实验结果表明,融合后的特征图像对比度增高,像素的空间连续性变好,且对单体建筑轮廓的识别更精准,自动提取的多边形矢量与真实建筑轮廓的吻合度更高。该文是连接多维SAR技术与建筑提取应用的重要一环,并且为基于多维SAR的3维建筑结构重建研究创造了条件。  相似文献   

13.
随着卫星技术的发展,极化合成孔径雷达(PolSAR)数据的分辨率和数据质量得到大幅提升,为人造目标的精细化目视解译提供了良好的数据条件。目前主要采用多分量分解的方法,但是易造成像素错分问题,为此,该文结合Yamaguchi极化分解和极化熵提出了一种非固定阈值划分的方法用于实现全极化SAR图像船只结构精细化特征表征。Yamaguchi极化分解能够识别基本散射机制,其修正后的体散射模型更符合实测数据,可有效对人造目标进行表征。极化熵H在弱去极化状态下可以看成某一指定等效点的目标散射机制,能够有效突出船只主散射特征。因此,该文通过将Yamaguchi极化分解算法的非固定三分量与极化熵的低中高熵内嵌,将其分为非固定阈值的九分类成分,从而降低硬阈值处理在阈值边界处受噪声影响产生的类别随机性。并且将二次散射和单次散射均显著的区域称为混合散射(MSM),以更好匹配实验中船只典型结构的散射类型。在此基础上,利用广义相似性参数进一步缩短类内距离,采用改进后的GSP-Wishart分类器进行迭代聚类,旨在通过提高二次散射和混合散射机制以提高不同类型船只可区分度。最后,该文采用中国上海某港口的高分三号全极化...  相似文献   

14.
文中提出了一种基于AdaBoost算法的全极化SAR(Synthetic Aperture Radar)图像分类方法.该方法将AdaBoost算法与HH、HV和VV三个极化通道数据结合起来,对全极化SAR图像进行分类,充分利用了极化信息和AdaBoost算法的快速收敛性.将该方法的仿真结果与H/α分类方法仿真结果进行比较,发现该方法分类模糊程度较低,在细节上分类更为准确,且在相同的情况下,该算法速度更快.  相似文献   

15.
极化SAR图像分类综述   总被引:4,自引:0,他引:4  
对极化SAR(合成孔径雷达)图像分类进行综述.首先建立简略的极化SAB图像分类技术发展流程,并对国内外研究机构在该领域的主要研究成果进行归纳;然后对用于极化SAR图像分类的众多特征进行分类整理,指出其物理意义及在图像分类中的优缺点,并从有监督和无监督的角度综述了现有的极化SAR图像分类方法;最后对极化SAR图像分类存在的问题进行归纳,并指出将来的研究方向.  相似文献   

16.
极化SAR遥感中森林特征的提取   总被引:1,自引:2,他引:1  
提出了极化散射矩阵总功率、极化熵、相似性参数的组合表达式。通过特征值分析可得该组合表达式的最优系数。该表达式对森林地区的特征敏感,所以可用来检测森林地区。使用中国天山地区的极化SAR数据,验证了所提方法是有效的。  相似文献   

17.
基于全极化SAR非监督分类的迭代分类方法   总被引:4,自引:1,他引:4       下载免费PDF全文
陈杰  周荫清  李春升 《电子学报》2004,32(12):1974-1977
本文在全极化合成孔径雷达(SAR)特征分解和最大似然估计(ML)分类的基础上,提出基于全极化SAR极化特征分解及最大似然估计的非监督分类迭代算法.这种方法灵活性好、精度高.本文提出了迭代分类方法的几种方案.针对特征分解和ML分类的各自特点,进行了分析比较,可以根据实际需要选择适合的迭代方法.并利用NASA JPL实验室的实测数据对该迭代分类算法进行了实验研究,得到了很好的实验结果.实验结果证明这种迭代算法有很好的适应性和很强的鲁棒性.  相似文献   

18.
滑文强  王爽  郭岩河  谢雯 《雷达学报》2019,8(4):458-470
该文针对极化SAR图像分类中只有少量标记样本的问题,提出了一种基于邻域最小生成树的半监督极化SAR图像分类方法。该方法针对极化SAR图像以像素为分类对象的特点,结合自训练方法的思想,利用极化SAR图像像素点的空间信息,提出了基于邻域最小生成树辅助学习的样本选择策略,增加自训练过程中被选择无标记样本的可靠性,扩充标记样本数量,训练更好的分类器。最终用训练好的分类器对极化SAR图像进行测试。对3组真实的极化SAR图像进行测试,实验结果表明,该方法在只有少量标记样本的情况下能获得满意的分类结果,且分类正确率明显优于传统的分类算法。   相似文献   

19.
一种基于RBF神经网络的极化SAR图像分类方法   总被引:1,自引:0,他引:1  
极化SAR图像分类是新体制雷达应用研究的基础前沿问题.文中提出了提出了一种基于径向基函数(Radial Basis Function,RBF)神经网络的极化SAR图像分类方法.在构建包含G0分布最大似然距离和一些常规特征的极化SAR图像分类特征集的基础上,利用样本数据对RBF神经网络进行训练,完成分类器的设计.实测极化SAR图像的分类实验结果表明,该方法具有较好的图像细节保持能力.  相似文献   

20.
该文提出一种描述极化SAR散射机制的散射模型。该模型由四种基本散射模型构成:布拉格散射,偶次散射,奇次散射和体散射。该散射模型成功地描述了人造目标和自然目标对电磁波的散射机制。本文利用美国空气动力实验室(JPL)的机载多极化合成孔径雷达系统获得的SAR图像数据对该模型进行了检验,结果表明该散射模型可以很好地描述建筑和植被覆盖地区对电磁波的散射机制。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号