首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
热处理对含CSiCTaCC界面C/C复合材料力学性能的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以准三维针刺炭纤维毡为预制体, 采用化学气相渗透工艺在预制体中炭纤维/基体炭之间制备C-SiC-TaC-C复合界面, 利用树脂浸渍-炭化工艺对材料进一步增密, 获得含C-SiC-TaC-C界面的C/C复合材料。研究了1400~2500℃不同温度热处理前后复合材料的微观结构和力学性能。结果表明: 热处理前, SiC-TaC界面为管状结构, 复合材料的抗弯强度为241.6 MPa, 以脆性断裂为主; 经1400~1800℃热处理后, TaC界面破坏呈颗粒状, 复合材料的平均抗弯强度下降到238.9~226.1 MPa, 其断裂方式不变, 但断裂位移由0.7 mm增至1.0 mm; 经2000~2500℃热处理后, SiC、 TaC界面均受到破坏, 复合材料平均抗弯强度急剧下降至158.7~131.8 MPa, 断裂方式由脆性断裂转变为假塑性断裂。   相似文献   

2.
CVI-SiC/TaC改性C/C复合材料的力学性能及其断裂行为   总被引:1,自引:1,他引:0       下载免费PDF全文
以针刺碳纤维整体毡为预制体,采用化学气相渗透工艺对预制体纤维进行PyC/SiC/TaC的多层复合模式的涂层改性,然后采用化学气相渗透和热固性树脂浸渍-炭化进行增密,制备出新型C/C复合材料.对复合材料的微观结构和力学性能进行了研究.结果表明:包覆在碳纤维表面的PyC/SiC/TaC多层结构均匀致密、无裂纹,在C/C复合材料中形成空间管状网络结构;改性后C/C复合材料的抗弯强度和韧性均大大提高,平均抗弯强度达到522MPa,断裂位移达到1.19mm;复合材料弯曲断裂形式表现为脆性断裂,经过2000℃高温热处理以后,复合材料的抗弯强度下降,但最大断裂位移增大,弯曲断裂形式由脆性断裂转变为良好的假塑性断裂.  相似文献   

3.
《复合材料学报》2008,25(5):91-97
以针刺碳纤维整体毡为预制体,采用化学气相渗透工艺对预制体纤维进行PyC/SiC/TaC的多层复合模式的涂层改性, 然后采用化学气相渗透和热固性树脂浸渍-化进行增密,制备出新型C/C复合材料。对复合材料的微观结构和力学性能进行了研究。结果表明:包覆在碳纤维表面的PyC/SiC/TaC多层结构均匀致密、无裂纹,在C/C复合材料中形成空间管状网络结构;改性后C/C复合材料的抗弯强度和韧性均大大提高, 平均抗弯强度达到522 MPa,断裂位移达到1.19mm;复合材料弯曲断裂形式表现为脆性断裂,经过2000℃高温热处理以后,复合材料的抗弯强度下降,但最大断裂位移增大,弯曲断裂形式由脆性断裂转变为良好的假塑性断裂。   相似文献   

4.
采用化学气相反应法在C/C复合材料表面制备了SiC涂层,利用X射线衍射仪、扫描电镜及能谱等分析手段研究了涂层的形貌和结构,并采用三点弯曲试验研究了材料的力学性能,讨论了SiC涂层及制备工艺对复合材料断裂行为的影响.结果表明:涂层后材料的弯曲强度和最大断裂位移明显增大.未涂层C/C复合材料的平均弯曲强度为172.4MPa,而涂层后C/C复合材料的平均弯曲强度为239.8MPa,弯曲强度提高了39.1%.涂层试样强度的提高主要与制备过程中部分蒸气扩散渗透反应引起的界面强化及SiC颗粒的增强作用有关.此外,涂层后材料的断裂模式未发生明显转变,断裂过程中试样表现出一定的假塑性和韧性断裂特征.  相似文献   

5.
采用液相浸渍炭化技术,在压力为75MPa下制备出4D-C/C复合材料,并进行高温热处理。研究静态和动态加载条件下,材料沿厚度方向的弯曲性能及断裂行为。结果表明,循环次数达到10×105次、频率为10 Hz时,材料的临界弯曲疲劳极限是静态弯曲强度的80%。静态弯曲加载情况下,C/C复合材料失效机制取决于试样底层炭纤维的取向。循环疲劳载荷作用下,其失效机制包括基体开裂、纤维-基体界面弱化及纤维断裂。复合材料在循环加载过程中界面结合强度降低,并释放内应力,故增强了纤维拔出以及复合材料的假塑性,疲劳加载后其剩余弯曲强度增加10%左右,而模量降低。疲劳载荷引起材料基体缺陷和裂纹数量的增加及纤维断裂,削弱了长度方向上的热膨胀,使材料热膨胀系数降低。  相似文献   

6.
用化学气相渗透(CVI)工艺,控制反应气体的流动方向制备出陶瓷相呈梯度分布的多层Si C/Ta C陶瓷复合界面改性C/C复合材料。结果表明,沿着C/C复合材料厚度方向Si C/Ta C陶瓷相的含量迅速减少,界面厚度下降,界面结构则从多层Si C/Ta C层状界面(I区)转变为团簇状Si C/Ta C陶瓷复相界面(II区)和单层Ta C陶瓷界面(III区)。在I区,多层Si C/Ta C陶瓷复合界面由Si C层(i层)、Ta C层(ii层)、镶嵌有Si C颗粒的Ta C复相层(iii层)、镶嵌有Ta C相的Si C复相层(iv层)以及Ta C层(v层)等五个子界面层组成。在II区,陶瓷相不再以层状形式包覆,而是呈团簇状生长在炭纤维表面。本文还探讨了多层Si C/Ta C陶瓷复合界面的纳米压痕硬度和杨氏模量的分布。  相似文献   

7.
掺杂改性C/C复合材料研究进展   总被引:1,自引:0,他引:1  
陶瓷掺杂改性碳/碳(C/C)复合材料在保持C/C复合材料原有优异高温力学性能及尺寸稳定性等特性的前提下,显著提高了C/C复合材料的高温抗氧化、抗烧蚀性能,且其具有可设计性和良好的抗热震性能等优势,是新型高超声速飞行器和新一代高性能发动机热防护部件的理想候选材料。综述了国内外在SiC陶瓷掺杂改性C/C复合材料,ZrC,ZrB2超高温陶瓷掺杂改性C/C复合材料以及TaC,HfC超高温陶瓷掺杂改性C/C复合材料等方面的最新研究进展和应用情况,并分析了陶瓷掺杂改性C/C复合材料目前研究及应用中存在的主要问题和今后潜在的研究发展方向。  相似文献   

8.
用化学气相渗透(CVI)方法在准三维针刺炭毡中沉积连续分布的TaC基体,制备出炭纤维增强TaC陶瓷基体C_f/TaC复合材料,研究了材料的力学性能和在1200-1600℃的氧化行为。结果表明,用CVI法可制备密度为5.12 g/cm~3的C_f/TaC复合材料,TaC陶瓷基体由相互平行的细纤维状晶体组成;与C/C材料相比,该复合材料的抗弯强度略低,但表现出较好的延展性断裂行为;在高温氧化过程中,C_f/TaC复合材料主要受气体在氧化层连通孔隙网络结构中的扩散和TaC/Ta_2O_5界面处的反应所控制。  相似文献   

9.
炭纤维热处理对C/C复合材料力学性能的影响   总被引:1,自引:0,他引:1  
采用化学气相沉积工艺对未处理和2 500℃热处理的炭纤维预制体进行致密化,对致密化后的C/C复合材料进行弯曲力学性能测试,借助偏光显微镜和扫描电子显微镜观察热解炭的组织、纤维的表面和弯曲试样断口的形貌.结果显示:高温热处理后,纤维表面变的更加光滑,表面出现很多沿纤维轴向的沟槽;致密化后的两种C/C复合材料的基体消光角约为21°,均为高织构热解炭;与未处理纤维增强C/C复合材料相比,经高温热处理后纤维增强的C/C复合材料的弯曲强度和模量均大幅下降,断裂特征由脆性转变为典型的假塑性,断口处有大量纤维拔出,纤维表面未粘附热解炭,表明对纤维进行高温热处理显著降低了纤维和热解炭基体的界面结合强度,导致材料强度降低,断裂呈假塑性.  相似文献   

10.
C/Mullite/Si-C-N复合材料的组织结构及其弯曲行为研究   总被引:1,自引:0,他引:1  
本研究制备出了以莫来石为界面层的炭纤维增强Si-C-N陶瓷基复合材料(C/Mullite/Si-C-N).使用三点弯曲法研究了复合材料在室温、1300℃和1600℃时的弯曲断裂行为,利用扫描电镜(SEM)和透射电镜(TEM)观察了复合材料的组织和弯曲断口形貌.结果表明:在室温和1300℃时,C/Mullite/Si-C...  相似文献   

11.
以聚丙烯腈( PAN) 基炭纤维(Cf ) 针刺整体毡为预制体, 用化学气相渗透(CVI) 法制备炭纤维增强炭基体(C/ C) 的多孔坯体, 采用熔融渗硅(MSI) 法制备C/ C-SiC 复合材料, 研究了渗剂中添加Al 对复合材料组织结构和力学性能的影响。结果表明: C/ C 坯体反应溶渗硅后复合材料的物相组成为SiC 相、C 相及残留Si 相。随着渗剂中Al 量的增加, 材料组成相中的Al 相也增加而其它相减少; SiC 主要分布在炭纤维周围, 残留Si 相分布在远离炭纤维处, 而此处几乎不含Al ; 当渗剂中Al 量由0 增加到10 %时, 复合材料的抗弯强度由116. 7 MPa 增加到175. 4 MPa , 提高了50. 3 % , 断裂韧性由5. 8 MPa·m1/2增加到8. 6 MPa·m1/2 , 提高了48. 2 %。Al 相的存在使复合材料基体出现韧性断裂的特征。   相似文献   

12.
采用Y2O3-Al2O3-SiO2-TiO2(YAST)玻璃作为中间层,对SiC-MoSi2表面改性的C/C复合材料与Li2CO3-Al2O3-SiO2(LAS)陶瓷进行热压连接,所施压力为20MPa,保温时间为30min,连接温度分别为1150℃,1200℃,1250℃,1300℃。利用SEM,EDS和BEI(背散射电子像)对SiC-MoSi2涂层,连接界面的形貌和断口进行了分析,研究结果表明,SiC-MoSi2涂层与基体结合紧密,Si、C元素在界面处呈梯度状分布,形成厚度约为15μm的过渡层。YAST玻璃与基体润湿良好,接头的剪切强度可达26.21MPa。  相似文献   

13.
采用模压半炭化成型工艺,在大气环境下制备了短切炭纤维增强的沥青基C/C炭复合材料.借助材料万能试验机和扫描电镜研究了短切炭纤维的表面处理对C/C复合材料体积密度和抗压强度的影响.结果表明:随着短切炭纤维表面处理强度的增大,C/C复合材料的抗压强度明显提高.用联合处理方法改性的短切炭纤维制备的C/C复合材料的抗压强度,比未处理的短切炭纤维增强的C/C复合材料的抗压强度,约提高了138.5%.  相似文献   

14.
抗烧蚀C/C复合材料研究进展   总被引:1,自引:0,他引:1  
C/C复合材料因优异的高温性能被认为是高温结构件的理想材料。然而,C/C复合材料在高温高速粒子冲刷环境下的氧化烧蚀问题严重制约其应用。因此,如何提高C/C复合材料的抗烧蚀性能显得尤为重要。笔者综述C/C复合材料抗烧蚀的研究现状。目前,提高C/C复合材料抗烧蚀性能的途径主要集中于优化炭纤维预制体结构、控制热解炭织构、基体中陶瓷掺杂改性和表面涂覆抗烧蚀涂层等4种方法。主要介绍以上4种方法的研究现状,重点介绍基体改性和抗烧蚀涂层的最新研究进展。其中,涂层和基体改性是提高C/C复合材料抗烧蚀性能的两种有效方法。未来C/C复合材料抗烧蚀研究的潜在方向主要集中于降低制造成本、控制热解炭织构、优化掺杂的陶瓷相以及将基体改性和涂层技术相结合。  相似文献   

15.
“CVI+压力PIP”混合工艺制备低成本 C/SiC复合材料   总被引:1,自引:0,他引:1  
以低成本填料改性有机硅浸渍剂作为先驱体,采用"化学气相渗透法+压力先驱体浸渍裂解法"(CVI+P-PIP)混合工艺制备了低成本C/SiC陶瓷复合材料.研究了浸渍剂裂解机理,探讨了界面涂层对复合材料性能的影响.结果表明,填料改性有机硅浸渍剂裂解产物结构致密、陶瓷产率高;压力可提高填料改性有机硅浸渍剂的致密效率.混合工艺充分利用沉积SiC基体和裂解SiC基体的致密化特点,有效缩短了制备周期.C/SiC/C三层界面不仅可降低纤维/基体之间结合强度界面,提高了复合材料韧性;而且减缓了氧化性气体扩散到碳纤维表面的速度,改善了复合材料的抗氧化性能.复合材料的抗弯强度达到455MPa,断裂韧性达到15.7MPa·m-1/2.在1300℃空气中氧化3h,复合材料失重仅8.5%.  相似文献   

16.
界面改性涂层对调节复合材料的力学性能起到重要作用。特别是在气相渗硅(GSI)制备C_f/SiC复合材料时,合适的界面改性涂层一方面保护C纤维不受Si反应侵蚀,另一方面调节C纤维和SiC基体的界面结合状况。通过在3D-C纤维预制件中制备先驱体浸渍-裂解(PIP)SiC涂层来进行界面改性,研究了PIP-SiC涂层对GSI C_f/SiC复合材料力学性能的影响。结果表明:无涂层改性的GSI C_f/SiC复合材料力学性能较差,呈现脆性断裂特征,其弯曲强度、弯曲模量和断裂韧性分别为87.6 MPa、56.9GPa和2.1 MPa·m~(1/2)。具有PIP-SiC界面改性涂层的C_f/SiC复合材料力学性能得到改善,PIP-SiC涂层改性后,GSI C_f/SiC复合材料的弯曲强度、弯曲模量和断裂韧性随着PIP-SiC周期数的增加而降低,PIP-SiC为1个周期制备的GSI C_f/SiC复合材料的力学性能最高,其弯曲强度、弯曲模量、断裂韧性分别为185.2 MPa、91.1GPa和5.5 MPa·m~(1/2)。PIP-SiC界面改性涂层的作用机制主要体现在载荷传递和"阻挡"Si的侵蚀2个方面。  相似文献   

17.
两种双基体C/C复合材料的微观结构与力学性能   总被引:1,自引:0,他引:1  
借助偏光显微镜、扫描电镜以及力学性能测试研究了两种双基体C/C复合材料的微观结构与力学性能。结果表明:基体碳在偏光显微镜下呈现出热解碳的光滑层组织,沥青碳的各向同性、镶嵌和流域组织。在SEM下普通沥青碳为"葡萄状"结构,中间相沥青碳为片层条带状结构。具有多层次界面结构的材料可以提高材料的弯曲强度,改善材料的断裂韧度,两种材料在载荷-位移曲线中载荷为台阶式下降,呈现出假塑性断裂特征。材料A和材料B的弯曲强度分别为206.68,243.66MPa,断裂韧度分别为8.06,9.66MPa·m1/2,材料B的弯曲强度、断裂韧度均优于材料A。  相似文献   

18.
评价了中国40多年来在航天、航空、光伏、粉末冶金、工业高温炉领域成功应用的针刺C/C,正交3D C/C、径编C/C、穿刺C/C、轴编C/C等五类C/C复合材料的物理、力学、热学、烧蚀、摩擦磨损、使用寿命等性能及特点,并与其他国家相应材料性能进行分析对比,为建立工程应用C/C复合材料共享的数据库平台奠定基础。揭示了炭纤维预制体、炭基体类型、界面结合状态与材料性能的关联度。指出炭纤维预制体结构单元精细化研究和其结构的梯度设计,以及炭基体的优化组合匹配技术,仍是C/C复合材料性能稳定化提升的重点研究方向。  相似文献   

19.
陶瓷基复合材料制备温度过高一直是制约其引入主动冷却工艺、突破其本征使用温度的主要原因之一。采用差热(TG-DTA)、红外(IR)、X射线衍射(XRD)等分析测试手段,研究了聚碳硅烷(Polycarbosilane,PCS)的裂解及化学转化过程,从理论上说明了先驱体聚碳硅烷(PCS)低温(1000℃)陶瓷化的可行性。结果表明:聚碳硅烷在750℃实现无机化,880℃开始结晶,即聚碳硅烷在高温合金耐受温度范围(1000℃)内,即可实现陶瓷化。以聚碳硅烷(PCS)为先驱体,炭纤维为增强体,采用先驱体浸渍裂解(PIP)工艺低温制备了炭纤维增强碳化硅(C/SiC)陶瓷基复合材料,当制备温度为900℃时,所制备C/SiC复合材料密度为1.70g/cm3,弯曲强度达到657.8MPa,剪切强度为61.02MPa,断裂韧性为22.53MPa.m1/2,并采用扫描电子显微镜(SEM)对复合材料的微观形貌进行了分析。  相似文献   

20.
采用反应热压烧结法制备了TaC/Ti3SiC2复合材料,借助XRD、SEM、能谱仪以及热重分析等,研究了TaC含量对TaC/Ti3SiC2复合材料的相组成、显微结构、力学性能和抗氧化性的影响。结果表明: 采用反应热压烧结法可以制备出致密的TaC/Ti3SiC2复合材料,该复合材料的主晶相为Ti3SiC2和TaTiC2,还含有少量的TiC;随着TaC含量的增加,TaC/Ti3SiC2复合材料的弯曲强度和断裂韧性呈现先增大后降低的变化趋势,当TaC含量为30wt%时,二者均达到最大值,此时弯曲强度为404 MPa,断裂韧性为4.10 MPa·m1/2;TaC的引入,使TaC/Ti3SiC2复合材料抗氧化性能明显优于Ti3SiC2材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号