首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The behavior of bored pile groups in cemented sands was examined by a field testing program at a site in South Surra, Kuwait. The program consisted of axial load tests on single bored piles in tension and compression and compression tests on two pile groups each consisting of five piles. The spacing of the piles in the groups was two- and three-pile diameters. Soil exploration included standard penetration tests, dynamic cone tests, and pressure meter tests. Laboratory tests included basic properties and drained triaxial compression tests. Test results on single piles indicated that 70% of the ultimate load was transmitted in side friction that was uniform along the pile shafts. The calculated pile group efficiencies were 1.22 and 1.93 for a pile spacing of two- and three-pile diameters, respectively. Since settlement usually controls the design of pile groups in sand, the group factor defined herein as the ratio of the settlement of the group to the settlement of a single pile at comparable loads in the elastic range was determined from test results. A comparison between the measured values and calculated values based on a simplified formula was made.  相似文献   

2.
Load Testing of a Closed-Ended Pipe Pile Driven in Multilayered Soil   总被引:2,自引:0,他引:2  
Piles are often driven in multilayered soil profiles. The accurate prediction of the ultimate bearing capacity of piles driven in mixed soil is more challenging than that of piles driven in either clay or sand because the mechanical behavior of these soils is better known. In order to study the behavior of closed-ended pipe piles driven into multilayered soil profiles, fully instrumented static and dynamic axial load tests were performed on three piles. One of these piles was tested dynamically and statically. A second pile served as reaction pile in the static load test and was tested dynamically. A third pile was tested dynamically. The base of each pile was embedded slightly in a very dense nonplastic silt layer overlying a clay layer. In this paper, results of these pile load tests are presented, and the lessons learned from the interpretation of the test data are discussed. A comparison is made of the ultimate base and limit shaft resistances measured in the pile load tests with corresponding values predicted from in situ test-based and soil property-based design methods.  相似文献   

3.
Observed Performance of Long Steel H-Piles Jacked into Sandy Soils   总被引:1,自引:0,他引:1  
Full-scale field tests were performed to study the behavior of two steel H-piles jacked into dense sandy soils. The maximum embedded length of the test piles was over 40?m and the maximum jacking force used was in excess of 7,000?kN. The test piles were heavily instrumented with strain gauges along their shafts to measure the load transfer mechanisms during jacking and the subsequent period of static load tests. Piezometers were installed in the vicinity of the piles to monitor the pore pressure responses at different depths. The time effect and the effect of installation of adjacent piles were also investigated in this study. The test results indicated that, although both piles were founded on stiff sandy strata, most of the pile capacity was carried by shaft resistance rather than base resistance. This observation implies that the design concept that piles in dense sandy soils have very large base capacity and small shaft resistance is likely to be inappropriate for jacked piles. It was also found that the variation in pore pressures induced by pile jacking was closely associated with the progress of pile penetration; the pore pressure measured by each piezometer reached a maximum when the pile tip arrived at the piezometer level. A nearby pile jacking was able to produce large tensile stresses dominating in the major portion of an installed pile; both the magnitude and distribution of the induced stresses were related to the penetration depth of the installing pile.  相似文献   

4.
Most of the current design methods for driven piles were developed for closed-ended pipe piles driven in either pure clay or clean sand. These methods are sometimes used for H piles as well, even though the axial load response of H piles is different from that of pipe piles. Furthermore, in reality, soil profiles often consist of multiple layers of soils that may contain sand, clay, silt or a mixture of these three particle sizes. Therefore, accurate prediction of the ultimate bearing capacity of H piles driven in a mixed soil is very challenging. In addition, although results of well documented load tests on pipe piles are available, the literature contains limited information on the design of H piles. Most of the current design methods for driven piles do not provide specific recommendations for H piles. In order to evaluate the static load response of an H pile, fully instrumented axial load tests were performed on an H pile (HP?310×110) driven into a multilayered soil profile consisting of soils composed of various amounts of clay, silt and sand. The base of the H pile was embedded in a very dense nonplastic silt layer overlying a clay layer. This paper presents the results of the laboratory tests performed to characterize the soil profile and of the pile load tests. It also compares the measured pile resistances with those predicted with soil property- and in situ test-based methods.  相似文献   

5.
Pile Response to Lateral Spreads: Centrifuge Modeling   总被引:1,自引:0,他引:1  
The paper presents results of eight centrifuge models of vertical single piles and pile groups subjected to earthquake-induced liquefaction and lateral spreading. The centrifuge experiments, conducted in a slightly inclined laminar box subjected to strong in-flight base shaking, simulate a mild, submerged, infinite ground slope containing a 6-m-thick prototype layer of liquefiable Nevada sand having a relative density of 40%. Two- and three-layer soil profiles were used in the models, with a 2-m-thick nonliquefiable stratum placed below, and in some cases also above the liquefiable Nevada sand. The model piles had an effective prototype diameter, d, of 0.6 m. The eight pile models simulated single end-bearing and floating reinforced concrete piles with and without a reinforced concrete pile cap, and two 2×2 end-bearing pile groups. Bending moments were measured by strain gauges placed along the pile models. The base shaking liquefied the sand layer and induced free field permanent lateral ground surface displacements between 0.7 and 0.9 m. In all experiments, the maximum permanent bending moments, Mmax occurred at the boundaries between liquefied and nonliquefied layers; the prototype measured values of Mmax ranged between about 10 and 300 kN?m. In most cases the bending moments first increased and then decreased during the shaking, despite the continued increase in free field displacement, indicating strain softening of the soil around the deep foundation. The largest values of Mmax were associated with single end-bearing piles in the three-layer profile, and the smallest values of Mmax were measured in the end-bearing pile groups in the two-layer profile. The companion paper further analyzes the Mmax measured in the single pile models, and uses them to calibrate two limit equilibrium methods for engineering evaluation of bending moments in the field. These two methods correspond to cases controlled, respectively, by the pressure of liquefied soil, and by the passive pressure of nonliquefied layers on the pile foundation.  相似文献   

6.
Both the driving response and static bearing capacity of open-ended piles are affected by the soil plug that forms inside the pile during pile driving. In order to investigate the effect of the soil plug on the static and dynamic response of an open-ended pile and the load capacity of pipe piles in general, field pile load tests were performed on instrumented open- and closed-ended piles driven into sand. For the open-ended pile, the soil plug length was continuously measured during pile driving, allowing calculation of the incremental filling ratio for the pile. The cumulative hammer blow count for the open-ended pile was 16% lower than for the closed-ended pile. The limit unit shaft resistance and the limit unit base resistance of the open-ended pile were 51 and 32% lower than the corresponding values for the closed-ended pile. It was also observed, for the open-ended pile, that the unit soil plug resistance was only about 28% of the unit annulus resistance, and that the average unit frictional resistance between the soil plug and the inner surface of the open-ended pile was 36% higher than its unit outside shaft resistance.  相似文献   

7.
The existence of large magnitude stresses at the tip of a bearing pile is a well known phenomenon leading to crushing of soil grains and thus affecting pile behavior. Classical foundation design calculations which assume that the soil fails in shear and neglect volume change can be safely used where stress levels or particle strengths prevent crushing, however in the case of weak grains or high foundation stresses consideration should be given to the effects of grain crushing and the resulting volumetric compression. Model pile tests have been carried out in two skeletal carbonate sands and a standard silica sand with the aim of examining the variation of skin friction and end bearing capacities with degree of penetration. The mobilization of the strength of crushable soils requires a much higher strain level while at the same time the end bearing pressure on the model piles exceeded 10?MPa inducing considerable particle breakage. The peak skin friction for all sands occurred at a settlement normalized by pile diameter, S/D, of less than 0.1. At this point the carbonate sands generally had lower skin friction values than the silica sand. Further displacement caused a rapid decrease in skin friction for all three materials. At higher lateral stresses the less crushable Toyoura silica sand generated higher skin frictions. Samples of Chiibishi sand were sectioned and photographed. It was observed that a spherical plastic zone was formed at the base of the pile which expanded with increasing S/D and a degraded layer of broken particles developed around the pile as S/D increased. Large values of the Marsal particle breakage factor were restricted to a zone extending outwards to one pile radius. An end bearing capacity modification factor has been proposed to adapt the conventional bearing capacity equation for soil crushability. This modification factor is a function of soil compressibility and degree of penetration. The factor was shown to decrease with increasing soil compressibility and increase with normalized penetration S/D.  相似文献   

8.
Shaft Capacity of Continuous Flight Auger Piles in Sand   总被引:1,自引:0,他引:1  
This paper presents the results of a series of field experiments performed to study the development of shaft resistance on continuous flight auger piles installed in sand. The test piles were instrumented in order to separate the shaft and base resistance, and to allow the determination of the distribution of shaft resistance along the pile shaft. The tests highlighted the importance of accurate calculation of the shaft resistance for nondisplacement piles. At a typical maximum allowable pile head settlement of 25?mm, more than 71% of the pile resistance was provided by shaft friction. Conventional methods of estimating shaft resistance were assessed. It was found that methods which incorporated parameters directly interpreted from in situ test results provided the most consistent estimates. In the final section, differences between the shaft resistances mobilized on displacement and nondisplacement piles are considered.  相似文献   

9.
An experimental investigation of the shaft resistance of single vertical and batter piles pushed into sand was conducted. A prototype laboratory setup was designed for testing relatively large model piles, inclined at an angle that varied between zero and 30° with the vertical. Two model piles having diameters of 38 and 76 mm were tested at a ratio of the pile’s length to diameter up to 40, and subjected to axial compression loading. The pile models were instrumented to allow direct measurements of the shaft resistance. A theoretical model was developed to take into account the asymmetrical earth pressure distribution around the pile shaft, the level of mobilization of the angle of friction between the pile shaft and the sand, and the pile diameter. The results predicted by the theory developed agreed well with the experimental results of the present investigation as well as other experimental and field results available in the literature. Design charts are presented for use in practice. The results of the present investigation support the concept of the critical depth for the shaft resistance of vertical and batter piles driven in sand.  相似文献   

10.
More than 20 years have passed since a Terzaghi Lecture focused on the topic of deep foundations. However, considerable research has been performed, and experience gained, in this subject area in the intervening period. The objective of this paper is to update the earlier references on deep foundations by summarizing results of important recent research on a few aspects of the topic of side resistance, most notably (1) driven piles in saturated clay, (2) driven piles in siliceous sand loaded in compression and uplift, (3) drilled shafts in clay, and (4) drilled shafts in soft rock. It is concluded that, while simple design relations are available for topic (1), much is still to be learned. Under topic (2), the case is made that loading the pile in compression and uplift produces different values of unit side-shearing resistance. Regarding topics (3) and (4), the effects of details related to construction—such as stress relief, moisture migration from the concrete to the geomaterial, borehole roughness, and borehole smear—are shown to be significant. The final point made is that the design of deep foundations is a complex matter that should be addressed in a design context by engineers who are experienced in the observation of pile behavior, theoretical modeling, and the appropriate use of design methods.  相似文献   

11.
Ultimate Lateral Resistance of Pile Groups in Sand   总被引:1,自引:0,他引:1  
Experimental investigations on model pile groups of configuration 1 × 1, 2 × 1, 3 × 1, 2 × 2, and 3 × 2 for embedment length-to-diameter ratios L∕d = 12 and 38, spacing from 3 to 6 pile diameter, and pile friction angles δ = 20° and 31°, subjected to lateral loads, were conducted in dry Ennore sand obtained from Chennai, India. The load-displacement response, ultimate resistance, and group efficiency with spacing and number of piles in a group have been qualitatively and quantitatively investigated. Analytical methods have been proposed to predict the ultimate lateral capacity of single pile and pile groups. The proposed methods account for pile friction angle, embedment length-to-diameter ratio, the spacing of piles in a group, pile group configuration, and soil properties. These methods are capable of predicting the lateral capacity of piles and pile groups reasonably well as noted and substantiated by the comparison with the experimental results of the writers and other researchers.  相似文献   

12.
Piles driven into clay are often subjected to indirect loading as a result of the surcharge applied on the surrounding area. During the drained period, both the piles and the soil undergo downward movements caused by the axial and the surcharge loading, respectively. Depending on the relative movement of the pile–soil system, positive and negative skin friction develop on the pile’s shaft. Negative skin friction is the drag force that may be large enough to reduce the pile capacity and/or to overstress the pile’s material causing fractures or perhaps structural failure of the pile, and/or possibly pulling out the pile from the cap. A numerical model that uses the finite element technique combined with the soil responses according to Mohr–Coulomb criteria was developed for case simulation. The computer program CRISP (developed by Cambridge University) was used in this study. The numerical model was first tested against the results predicted by the bearing capacity theories for pile foundations in clay subjected to axial loading. Upon achieving satisfactory results, the numerical model was then used to generate data for piles subjected to surcharge loading. The predicted values were compared well with the field data and the empirical formulae available in the literature. Based on the results of the present investigation, design charts and procedures are presented to predict the location of the neutral plane and to estimate the drag force acting on the pile’s shaft for a given pile–soil–loading conditions. In the case of excessive drag force, coating the pile’s shaft with a thin layer of bitumen is advisable to eliminate or minimize the drag force. The design procedure presented herein would provide the means to establish the need and the extent of the pile coating. Furthermore, it demonstrates the role of the factor of safety on both pile capacity and the depth of the neutral plane.  相似文献   

13.
Lateral Resistance of Full-Scale Pile Cap with Gravel Backfill   总被引:1,自引:0,他引:1  
A static lateral load test was performed on a full-scale 3×3 pile group driven in saturated low-plasticity silts and clays. The steel pipe piles were attached to a concrete pile cap which created a “fixed-head” end constraint. A gravel backfill was compacted in place on the backside of the cap. Lateral resistance was therefore provided by pile–soil–pile interaction, as well as base friction and passive pressure on the cap. In this case, passive resistance contributed about 40% of the total resistance. The log–spiral method provided the best agreement with measured resistance. Estimates of passive pressure computed using the Rankine method significantly underestimated the resistance while the Coulomb method overestimated resistance. The cap movement required to fully mobilize passive resistance in the gravel backfill was about 6% of the cap height. This is somewhat larger than reported in other studies likely due to the underlying clay layer. The p-multipliers developed for the free-head pile group provided reasonable estimates of the pile–soil–pile resistance for the fixed-head pile group once gaps adjacent to the pile were considered.  相似文献   

14.
For bridges supported by piles, acceptable system performance under seismic loading depends on effective pile-to-cap connections. A fixed pile-to-cap connection is often desirable to help control deflections during lateral loading when soft soils are present. While reinforcement bar cages that extend from the pile into the cap are effective in providing a fixed pile-to-cap connection, it is more economical to rely on pile embedment to provide fixity and moment resistance. This study investigated embedded pile-to-cap connections for concrete-filled pipe piles. Four full-scale specimens, each consisting of a cap with two piles, were investigated in the field under cyclic loading. The specimens had minimal reinforcement and varying amounts of pile embedment. Results show that the moment resistance of pile-to-cap connections can be significantly greater than what is typically calculated based on the flexural reinforcement and embedment bearing. Excess moment capacity may be explained by friction between the pile and the cap at the connection. This friction mechanism is described and discussed in the context of experimental results from other studies.  相似文献   

15.
Base Resistance of Jacked Pipe Piles in Sand   总被引:1,自引:0,他引:1  
The paper presents the results from an experimental program carried out at Trinity College Dublin, in which instrumented model piles were jacked into loose dry sand in a large testing chamber. A number of pile installations were carried out to study the effects of in situ stress, diameter, and wall thickness on the behavior of open-ended piles in sand. These indicated that plug stiffness and capacity may be expressed as simple functions of the cone penetration test end resistance and the incremental filling ratio prior to loading. The magnitude and distribution of shear stresses measured on the inner wall are shown to be compatible with existing experimental data and can be related directly to the stress level, interface friction angle, and dilation of the sand at the pile wall. The data are shown to facilitate a better understanding of the factors controlling plug resistance.  相似文献   

16.
This paper provides a rational method for evaluating a realistic lower bound for the base resistance of pipe piles in siliceous sand. Separate expressions are developed to represent the response to load of the pile plug, the sand below the pile base, and the sand below the pile annulus. These expressions are combined to give the overall base response of a pipe pile. Predicted responses are compared with databases compiled on the ultimate capacities of pipe piles and with base pressure-displacement characteristics observed in static load tests. The estimations are shown to match observed base resistances of large diameter piles for which the coring mode of penetration during driving dominates.  相似文献   

17.
Thirty six tests on model tubular steel piles embedded in sand were carried out in the laboratory to assess the effects of compressive load on uplift capacity of piles considering various parameters. The model piles were of 25 mm outside diameter and 2 mm wall thickness. The soil–pile friction angles were 21 and 29° in loose and dense conditions of sand. The piles were embedded in sand for embedment length/diameter ratios of 8,16, and 24 inside a model tank. They were subjected to a static compressive load of 0, 25, 50, 75, and 100% of their ultimate capacity in compression and subjected to pull out loading tests. The experimental results indicated that the presence of the compressive load on the pile decreases the net uplift capacity of a pile and the decrease depends on the magnitude of the compressive load. A logical approach, based on the experimental results, has been suggested to predict the net uplift capacity of a pile considering the presence of compressive load.  相似文献   

18.
采用西澳大学室内鼓轮式离心机,在预先固结的高岭黏土中开展不同离心力场(50g,125g及250g,g为重力加速度)条件下的模型压桩试验、T-bar试验和静力触探试验,分析了模型桩在贯入过程、静置稳定过程中桩身径向应力(σr)的变化规律,并对后期桩体拉伸载荷阶段的径向应力变化值(Δσr)及桩侧摩阻力变化情况行了探讨,揭示了在不同超固结比(OCRs)黏土中静压桩侧摩阻力的演变特性.在此基础上,通过两种经验公式方法对桩侧摩承载力进行了预测计算和对比分析.研究结果表明:沉桩过程中桩端相对高度(h/B)对桩身径向应力的发展变化有很大的影响,桩身不同位置(h/B)的总径向应力对同一贯入深度而言,存在桩侧径向应力退化现象;基于静力触探试验提出的经验方法,能有效考虑静力触探锥端阻力(qt)和桩端相对高度(h/B)因素的影响,将其应用于黏土沉桩时桩侧摩阻力的预测,可取得与试验实测结果较吻合的结果.研究成果对软土地区静压桩施工与承载力设计具有一定的工程指导意义.   相似文献   

19.
为了验证单桩承载能力,了解桩周和桩端阻力,采用钻孔灌注端承桩进行荷载和应变测试,并采用循环荷载方法,进行了端承桩荷载传递与阻力分析试验。根据静载试验和阻力测试结果,并依据地层剖面,分别求得单桩容许承载力、轴向力的分布、桩周岩土阻力和桩端岩基阻力,同时对如何考虑桩周阻力和利用桩端地基强度,提出了建议。  相似文献   

20.
Pile foundations located within consolidating ground are commonly subjected to negative skin friction (NSF) and failures of pile foundations related to dragload (compressive force) and downdrag (pile settlement) have been reported in the literature. This paper reports the results of four centrifuge model tests, which were undertaken to achieve two objectives: first, to investigate the response of a single pile subjected to NSF with different pile tip location with respect to the end-bearing stratum layer; and second, to study the behavior of floating piles subjected to NSF with and without shielding by sacrificing piles. In addition, three-dimensional numerical analyses of the centrifuge model tests were carried out with elastoplastic slip considered at the pile-soil interface. The measured maximum β value at unprotected single end-bearing and floating pile was similar and slightly smaller than 0.3. On the contrary, smaller β values of 0.1 and 0.2 were mobilized at the shielded center piles for pile spacings of 5.0 d and 6.0 d, respectively. The measured maximum dragload of the center pile in the group at 5.0 d and 6.0 d spacing was only 53% and 75% of the measured maximum dragload of an isolated single pile, respectively. Correspondingly, the measured downdrag of the center pile was reduced to about 57% and 80% of the isolated single pile. Based on the numerical analyses, it is revealed that sacrificing piles “hang up” the soil between the piles in the group and, thus, the vertical effective stress in the soil so reduced, as is the horizontal effective stress acting on the center pile. This “hang-up” effect reduces with an increase in pile spacing. For a given pile spacing, shielding effect on dragload is larger than that on downdrag.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号